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Abstract 

 

The numbers system is one of the widest-used symbolic systems in human culture – almost 

all of us read, write, and understand numbers. As a formal system, it is very simple: merely 10 

digits, few dozens of number words, and a relatively small set of formal rules are sufficient to 

define how any digit string can be converted to the corresponding sequence of number words 

and vice versa, and the quantity represented by these sequences. As a cognitive system, however, 

the number system is not that simple. It involves multiple representations – digits, number 

words, and quantity – and dedicated conversion pathways between these representations. The 

complexity of this system is demonstrated by the long period – several years – that it takes 

children to master it, and by the finding of many different cognitive disorders that disrupt 

number processing. 

One cognitive challenge in handling numbers is converting them from one representation to 

another. The challenge is especially difficult for multi-digit numbers: they require not only 

mapping digits and number words between representations, but also taking into account the 

relations between these elements. Thus, multi-digit numbers boost the number system from a 

simple symbolic system into a syntactic system, one that represents the number’s structure.  

This PhD research examined two conversion pathways of multi-digit numbers: how a digit 

string is converted to quantity when we comprehend it, and how it is converted to a sequence of 

number words when we read it aloud. For each of these pathways, I focused on the syntactic 

processes that handle the number’ structure. 

Converting digit strings to quantity. To investigate this conversion process, we developed 

a novel research paradigm: participants pointed to the location of multi-digit numbers on a 

number line, while their finger location was continuously monitored. The location marked on 

the line reflect the underlying quantity representation, and the intermediate finger movement 

reflects the process of creating this quantity. 

One such question examined using this paradigm was whether the quantity representation 

relies on a linear or a compressive scale. Previous studies consistently showed that educated 

adults map numbers to positions linearly. In 8 experiments with 174 participants, they too 

showed a linear mapping pattern at the trajectory endpoints, but crucially, they showed a 

transient logarithmic effect in intermediate finger locations. This transient log effect resulted 

from differential processing speeds of small versus large quantities: small numbers are 
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processed faster than large numbers, so the finger deviates towards the target position earlier for 

small numbers than for large numbers. When the finger deviation times were controlled for, the 

log effect disappeared. This faster processing of small numbers presumably results from 

nonlinearity in the quantity representation: the encoding of larger quantities is fuzzier, so it takes 

longer to process. 

A second major question was whether the digits of a multi-digit number are processed 

serially or in parallel. To examine this question, we ran two number-to-position experiments 

while inducing a lag between the appearance of the decade and unit digits. Inducing a lag in the 

unit digit delayed the unit effect on finger movement by 35 ms less than the lag duration, 

indicating an idle time window of 35 ms in the units processing pathway. We propose that this 

idle time window results from the creation of a syntactic frame, a representation of the multidigit 

number’s structure. 

We also examined the decision processes involved in the number-to-position task. Bayesian 

theory predicts that optimal decisions start from a prior probability distribution of possible 

responses, acquired from previous trials, and update it according to specific evidence received 

on the current trial. We examine this prediction with our task by manipulating three different 

factors: the finger’s initial direction, the distribution of prior target numbers, and the current 

target number. As predicted by the Bayesian model, finger direction was sequentially affected 

by these three factors, in this order. 

The investigation of number comprehension concludes with a detailed cognitive model of 

the number-to-position mapping task, comprising 3 distinct stages: a quantification stage; a 

Bayesian accumulation-of-evidence stage, leading to a decision about the target location – first 

according to prior trials, then according to the current-trial target; and a pointing stage. The 

model describes several sub-processes in the quantification stage: creating a syntactic frame for 

the multi-digit number; binding each digit to a decimal role in this frame (units, decades, etc.); 

quantifying the digit according to this role; and integrating the per-digit quantities into whole-

number quantity representations – an exact-linear representation and an approximate-

compressive representation. 

Converting digit strings to number words. To dissect this conversion pathway, we 

investigated the number processing abilities of seven individuals with different selective deficits 

in number reading. Some participants were impaired in visual analysis of digit strings: in 

encoding the digit order, encoding the number length, or parsing the digit string to triplets. 
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Others were impaired in verbal production, making errors in the number’s structure. Based on 

the participants’ selective impairments and on previous findings, we propose a detailed 

cognitive model of number reading. The model postulates that within visual analysis, separate 

sub-processes encode the digit identities and the digit order, and additional sub-processes 

encode the number’s decimal structure: its length, its triplet structure, and the positions of 0. 

Verbal production consists of a process that generates the verbal structure of the number, in a 

tree-like structure that is then linearized to a sequence of number-word specifiers; and another 

process that retrieves the phonological forms of each number word. 

The degree of specificity of these number reading processes was investigated in two 

additional studies. The first of these studies examined whether number reading (converting digit 

strings to words) uses the same cognitive processes as word reading (converting letter strings to 

words). We review in detail the various sub-processes involved in reading words and numbers, 

and ask whether each of them serves only word reading, only number reading, or both. The 

review of previous studies, together with two new word-number dissociations we found in the 

present study, led to the conclusion that the reading pathways of words and numbers are almost 

fully separate. We propose that differences in the morpho-syntactic structure of words and 

numbers may underlie this separation. 

The second study examined whether number reading (converting digit strings to words) uses 

the same cognitive processes as number comprehension (converting digit strings to quantity). 

Again, the answer was negative: we investigated ZN, an aphasic patient who could not read 

two-digit strings but could convert them to whole-number quantities. This dissociation indicates 

that the syntactic processes that handle the number’s structure during number reading are 

separate from the syntactic processes involved in number comprehension. 

Arithmetic facts. The final section of this dissertation investigated a possible source of 

difficulty in learning the multiplication table: hypersensitivity to interference, a severe difficulty 

in memorizing similar verbal items. Previous studies showed correlational evidence for relation 

between hypersensitivity to interference and multiplication deficits; here, we provide causal 

evidence. In a training study, we manipulated the degree of interference, and we showed that 

high-interference conditions disrupted the memorization of the multiplication table but low-

interference conditions did not. We lay out a possible analogy between this case and other 

situations of sensitivity to interference, and propose that sensitivity to interference is a property 

of syntactic systems that represent relations between items. Furthermore, our method indicates 
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that effective teaching of the multiplication table should group together multiplication facts as 

dissimilar from each other as possible; this may call for reconsideration of the teaching methods 

in elementary schools. 

Overall, this dissertation resulted in two detailed cognitive models of multi-digit number 

processing: one describing how digit strings are converted to quantity, and the other describing 

how digit strings are converted to oral number words. As part of this dissertation, we created a 

novel research paradigm (trajectory-tracked number-to-position task), and a battery for detailed 

assessment of cognitive disorders in symbolic number processing. Finally, we developed a 

treatment method for rehabilitation of impaired knowledge of calculation facts. 
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1. Introduction 

Most educated adults can easily read, write, and understand multi-digit numbers, yet this 

cognitive ability is not at all simple. Culturally, it took millennia to develop the symbolic system 

of numbers and the place-value decimal system. From a developmental perspective, it takes 

young children several years until they master the decimal system and the meaning of numbers 

(Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Geary, 1994; Siegler & Booth, 2004; 

von Aster & Shalev, 2007). And clinically, brain injuries can cause many different numerical 

deficits (Cipolotti, Butterworth, & Denes, 1991; Dehaene & Cohen, 1991, 1995, 1997; Dehaene, 

Piazza, Pinel, & Cohen, 2003; Delazer & Bartha, 2001; Delazer, Girelli, Semenza, & Denes, 

1999; Deloche & Seron, 1982; Geary, 1993; McCloskey, Sokol, & Goodman, 1986; Willmes, 

2008).  

The history of multi-digit number systems is long and winding. Most of the early number 

systems were additive/subtractive systems, where the quantity is obtained by summation or 

subtraction of the digit values (e.g., in Roman numerals XVII = 10+5+1+1 = 17). Additive 

systems were abandoned with time, except sporadic use such as the way we use Roman numerals 

nowadays. They were replaced by positional systems, in which the value of a digit symbol, and 

often the number word that corresponds with that digit, depends not only on the symbol but also 

on its position within the string. Even after positional systems were invented, they were still 

quite different from modern positional systems: in the earliest positional system, the Babylonian 

system, numbers were written with several symbols per position (e.g., the digits 1 and 4 both 

occupied one position, in which 1 was represented by a single symbol , and 4 was represented 

by a sequence of symbols: ). This system did not have a zero digit – a null value in a certain 

position was indicated by space. For example, the number 7203, which in this base-60 system 

is broken down into 2 x 602 + 0 x 601 + 3 x 600, was written as 3 ( ) in the units (rightmost) 

position, empty value (space) in the 601 position, and 2 ( ) in the 602 (third) position: 

. It took about two thousand more years to reach a number system that essentially resembles the 

modern system, with one character per position and a zero symbol to indicate null-value 

positions (Chrisomalis, 2010). 

The complexity introduced by multi-digit numbers is not only historical but also cognitive, 

because the leap from single digits to multi-digit numbers involves some additional dedicated 

cognitive mechanisms. Some of the strongest evidence for the existence of such dedicated 



Chapter 1. Introduction 

 2

mechanisms come from situations in which these mechanisms malfunction. Several case studies 

reported individuals who had good processing of single digits, but difficulties in processing 

multi-digit numbers, with error types that suggested a selective deficit in digit-integration 

mechanisms (Cipolotti, 1995; Cipolotti, Warrington, & Butterworth, 1995; McCloskey, 1992; 

McCloskey, Sokol, Caramazza, & Goodman-Schulman, 1990). The complexity of multi-digit 

numbers is experienced not only by individuals with cognitive deficits, but by almost 

everybody: learning to handle multi-digit numbers is a long and tedious process for children. 

Once children have learned single digits, it takes them several more years to learn how to read 

multi-digit numbers (although they do exhibit partial knowledge of the decimal system more 

quickly, Barrouillet, Thevenot, & Fayol, 2010). 

This PhD research investigated the cognitive mechanisms of number processing, focusing 

on multi-digit numbers – i.e., on the mechanisms that integrate digits into a number. From a 

theoretical perspective, knowing how our cognitive system handles digit integration would 

improve our understanding of these numerical cognition mechanisms, and as we shall see below, 

may also have wider implications regarding the way our cognitive system handles integration 

of information in general. From a clinical perspective, by improving our knowledge of the 

cognitive mechanisms of multi-digit number processing, we can help individuals with number 

processing impairments. 

�   �   � 

Historically, the research of numerical cognition has received much less attention than the 

research of reading or writing. A major advance in the field of numerical cognition was during 

the mid-1980’s and early 1990’s, when Michael McCloskey and his colleagues published a 

cognitive model of number processing (McCloskey, 1992; McCloskey et al., 1986). This model 

aimed to explain the behavior of healthy individuals as well as that of individuals with number-

related cognitive impairments (Mccloskey & Caramazza, 1987), and to allow for assessment of 

specific cognitive malfunctions in individuals with number-related cognitive impairments 

(McCloskey, Aliminosa, & Macaruso, 1991; McCloskey, Caramazza, & Basili, 1985; 

McCloskey et al., 1990, 1986). The general architecture of this model was a central semantic 

representation of numbers, which serves as the workbench for various operations such as 

calculation. The model further postulated format-specific peripheral processes that convert 

sequences of digits and sequences of number words from/to the central semantic representation, 

and described in detail several of these processes. 
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McCloskey’s assumption of a central semantic representation was challenged by Stanislas 

Dehaene and Laurent Cohen during the early 1990’s: their triple-code model stipulates three 

distinct representations of numbers – digits, words, and quantity – with no central semantic 

representation (Dehaene, 1992; Dehaene & Cohen, 1995). According to this model, number-

related operations operate on one or more of these representations, and the conversion 

(transcoding) between each pair of representations is done by a dedicated direct processing 

route. Several studies supported the notion of three different number representations (Benson & 

Denckla, 1969; Cohen & Dehaene, 1995; Cohen, Dehaene, Chochon, Lehéricy, & Naccache, 

2000; Cohen, Verstichel, & Dehaene, 1997; Dehaene et al., 2003; Delazer & Bartha, 2001; 

Dotan & Friedmann, 2015; Friedsmann, Dotan, & Rahamim, 2010; Marangolo, Nasti, & Zorzi, 

2004; Marangolo, Piras, & Fias, 2005; McCloskey et al., 1986; Noël & Seron, 1993) as well as 

the existence of direct transcoding routes (Cohen & Dehaene, 1991, 2000; Cohen, Dehaene, & 

Verstichel, 1994). At the onset of the 3rd millennium, the triple-code model is widely accepted. 

If numbers are indeed converted between representations by several direct transcoding 

routes, the structure of each of these transcoding routes becomes a major question. For single-

digit numbers, one may perhaps hypothesize that transcoding involves direct mapping from one 

representation to another. However, the complexity of multi-digit numbers seems unlikely to be 

solved merely by direct mapping. Consider, for example, the processes that you must perform 

to read aloud the number 4761 or to understand the quantity it represents. You would have to 

encode the positional relations between digits, to map each digit to the corresponding word or 

quantity, and potentially to integrate these words or quantities while respecting the relative order 

of digits and their decimal positions. The majority of this dissertation concerns two such 

representation-conversion processes: section A investigates the processes involved in 

multidigit-to-quantity conversion, namely, how we understand the quantity represented by 

multi-digit numbers. Section B investigates the processes involved in multidigit-to-verbal 

conversion, namely, how we read aloud numbers. 

Section A: Converting multi-digit numbers to quantity 

Within the domain of numerical cognition, research in the recent decades has put much 

attention to the representation of quantities. Quantities are encoded by the Approximate Number 

System (ANS), which represents numeric magnitudes in a continuous and approximate manner 

(Brannon, 2006; Dehaene, 1997; Dehaene & Cohen, 1995; Dehaene, Dehaene-Lambertz, & 

Cohen, 1998; Dehaene, Izard, Spelke, & Pica, 2008; Piazza, 2010; Xu, Spelke, & Goddard, 



Chapter 1. Introduction 

 4

2005). With respect to multidigit numbers, existing research raised at least two major questions, 

both of which are addressed by this dissertation. The first question is whether a multi-digit 

number is transcoded into single, holistic quantity (Dehaene, Dupoux, & Mehler, 1990; Fitousi 

& Algom, 2006; Reynvoet & Brysbaert, 1999), or is handled in a decomposed manner, as 

several single-digit quantities (Meyerhoff, Moeller, Debus, & Nuerk, 2012; Moeller, Fischer, 

Nuerk, & Willmes, 2009; Nuerk & Willmes, 2005). The second question is whether the digits 

of a multi-digit number are quantified in parallel or sequentially (Hinrichs, Berie, & Mosell, 

1982; Meyerhoff et al., 2012; Moeller, Fischer, et al., 2009).  

A third question is the nature of the internal scale used by the ANS to encode quantities. 

Several studies showed that the ANS exhibits logarithmic rather than linear patterns (Anobile, 

Cicchini, & Burr, 2012; Berteletti et al., 2010; Booth & Siegler, 2006; Dehaene et al., 2008; 

Dehaene & Marques, 2002; Lourenco & Longo, 2009; Núñez, Doan, & Nikoulina, 2011; Opfer 

& Siegler, 2007; Siegler & Booth, 2004; Siegler & Opfer, 2003; Viarouge, Hubbard, Dehaene, 

& Sackur, 2010). These findings were explained as indicating some form of nonlinearity in the 

internal quantity scale – either the scale itself is logarithmic, or the information-to-noise ratio 

gets worse as the quantity increases (scalar variability, Cicchini, Anobile, & Burr, 2014; 

Dehaene, 2007). Importantly, in the context of digit-to-quantity transcoding, logarithmic 

patterns were observed only for young children, suggesting perhaps that the quantity scale 

changes with aging or following education (Berteletti et al., 2010; Booth & Siegler, 2006; 

Dehaene et al., 2008; Opfer & Siegler, 2007; Siegler & Booth, 2004; Siegler & Opfer, 2003). 

The present research showed such logarithmic patterns even in adults. 

Section B: Converting multi-digit numbers to number words 

Section B dissects the mechanisms of digit-to-verbal transcoding, i.e., number reading. 

Several studies showed that number reading is a unique process that is dissociable from the 

opposite transcoding pathway – verbal-to-digit transcoding, or number writing (Cipolotti, 1995; 

Cipolotti, Butterworth, & Warrington, 1994; Lochy, Domahs, Bartha, & Delazer, 2004). Digit-

to-verbal conversion is also dissociable from digit-to-quantity conversion (Cohen & Dehaene, 

2000). Moreover, within number reading, separate sub-processes handle the single-digit 

identities (“lexical” processes), whereas other sub-processes handle the relations between digits 

(“syntactic” processes) (Cipolotti, 1995; Cipolotti et al., 1995; Dotan & Friedmann, 2015; 

McCloskey, 1992; McCloskey et al., 1990). Here, we present a new, detailed cognitive model 
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for the processes involved in number reading. To support this model, we report several 

neuropsychological case studies, each corroborating certain model parts. 

We also examined the relation between number reading (multidigit-to-verbal transcoding) 

and two related operations: number comprehension (multidigit-to-quantity transcoding) and 

word reading. The question was whether these two operations use the same cognitive 

mechanisms as number reading, or different mechanisms. In particular, we examined whether 

the digit-integration mechanisms that enable reading multi-digit numbers are dedicated to this 

purpose, or they also serve word reading or number comprehension. In two studies, we showed 

that multidigit number reading dissociates both from word reading and from multidigit number 

comprehension. 

Section C: Learning the multiplication table 

The last section of this dissertation examines a slightly different topic – the learning of the 

multiplication table. Conceptually, memorizing the multiplication table may be viewed as 

another form of digit integration – only here, the integration does not take the form of processing 

several digits within a multidigit string, but of associating a digit pair with the multiplication 

result. This digits-result association – namely, the knowledge of multiplication facts – is thought 

to be stored verbally (Dehaene & Cohen, 1997; Dehaene et al., 2003; Lemer, Dehaene, Spelke, 

& Cohen, 2003).  

Learning the multiplication facts is extremely difficult for some individuals (Geary & Hoard, 

2001; Gross-Tsur, Manor, & Shalev, 1996; Landerl, Bevan, & Butterworth, 2004; McCloskey, 

Harley, & Sokol, 1991; van Harskamp & Cipolotti, 2001). Interestingly, a recent line of studies 

by Alice De Visscher and Marie-Pscale Noël (De Visscher & Noël, 2013, 2014a, 2014b) showed 

that at least in some cases, this kind of dyscalculia may be explained by a more general verbal 

difficulty, which they termed “hypersensitivity to interference”. Individuals with this disorder 

have great difficulty in memorizing verbal items that are similar to each other, as is the case in 

the multiplication table. To make this point, De Visscher and Noël showed that hypersensitivity 

to interference correlates with impaired knowledge of multiplication facts. Here, we stress this 

point even further, by showing not only correlational but also causal evidence: we report a 

woman with hypersensitivity to interference, and we show that when interference is reduced, 

she could easily learn the multiplication facts. This study also had an important clinical goal: it 

created an intervention program aimed to teach the multiplication facts to individuals with 

hypersensitivity to interference, and it showed the effectiveness of this program.   
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Section A: From digits to quantity 

The invention of multi-digit numbers is a major achievement in our culture. It took mankind 

centuries to develop the idea that large numbers can be represented with merely 10 symbols by 

relying on their relative positions. During education, the human brain learns the decimal system 

and, ultimately, it becomes very intuitive that the digit 4 in 41 stands for four decades, while the 

digit 4 in 14 stands for four units. But what is it exactly that we understand? How does our brain 

represent multi-digit quantities, and what are the processes that convert a sequence of digit 

symbols into this quantity representation? In spite of our growing knowledge of the cognitive and 

neurological brain mechanisms of numerical cognition, the issue of multi-digit quantities was 

addressed by relatively few studies, and even fewer have investigated the processes that convert 

digits into these quantities. Section A of this PhD dissertation examines these issues. It investigates 

the various cognitive representations of numbers in educated adults, dissects the successive stages 

by which multi-digit Arabic numbers are converted into quantities, and eventually describes a 

detailed cognitive and mathematical model for these operations. 

This section consists of a series of studies that we conducted on these topics. Chapter 2 is the 

first study in this series, and as such it lays the grounds to the questions we ask and to the 

methodological paradigm we used throughout this section. The questions concern several aspects 

of the quantification process of multi-digit numbers and of the resulting representation: holistic 

quantity representation, linear versus logarithmic quantity scale, and serial versus parallel 

processing. The paradigm we used was developed as part of this PhD research. It is a version of 

the number-to-position mapping task, in which participants see numbers and indicate the 

corresponding location on a number line (Berteletti et al., 2010; Opfer & Siegler, 2007; Siegler & 

Opfer, 2003). In our version of this paradigm, the participants performed the task on a tablet 

computer and we tracked their finger trajectories throughout each trial. The position-per-time 

information reflects the cognitive operations in different stages during the trial (Finkbeiner & 

Friedman, 2011; Finkbeiner, Song, Nakayama, & Caramazza, 2008; Santens, Goossens, & 

Verguts, 2011; Song & Nakayama, 2008a, 2008b, 2009), so it allows for a temporal dissection of 

the cognitive processes involved in the task. The major finding of this study was that the pattern 

of mapping numbers to positions showed a logarithmic pattern for a short period during the trial, 

and by the end of the trial, the mapping changed to linear. This study concluded that two-digit 
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numbers have dual quantity representation: a single, holistic quantity that is encoded using a 

nonlinear compressive quantity scale; and another representation that uses a linear scale. 

Chapter 3 described a larger study with 7 experiments, which examined the same issues in 

more detail. The basic pattern of results in Chapter 2 was replicated – a transient logarithmic 

pointing pattern. Using new experiments and new analysis methods, we offer a better interpretation 

of this pattern – that the logarithmic pattern is an artifact of differential processing times for small 

versus large numbers. This study concludes with a detailed cognitive and mathematical model of 

converting two-digit numbers to quantity representation, as well as for the processes involved in 

converting this quantity to a position on the number line where the finger is guided. 

The next two chapters further enhance the cognitive model presented in Chapter 3. In 

Chapter 4, we examine whether the two digits are quantified independently or are dependent on 

each other. The pattern of dependencies we found led us to offer the existence of a new component 

in digit-to-quantity conversion: we suggest that to quantify a number, one must first create a 

representation of its decimal structure – a syntactic representation, in essence.  

Chapter 5 examines the number-to-position task from a slightly different aspect – that of 

decision-making. In each trial in this task, the participants need to determine – sometimes based 

on partial information – a location to which they should point. We examined the assumption that 

this decision-making can be modeled as a Bayesian process, where each trial starts with a tentative 

decision based on a-priori expectation, derived from the participant’s previous experience during 

the experiment, and this expectation is then overridden by the trial’s target number.  

The summary of this section presents a detailed model of the number-to-position mapping task. 

The model offers a detailed account to how we convert a two-digit number to quantity and then to 

a location on the number line. 
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2. How do we convert a number to a finger trajectory?° 

Abstract. How do we understand two-digit numbers such as 42? Models of multi-digit number 

comprehension differ widely. Some postulate that the decades and units digits are processed 

separately and possibly serially. Others hypothesize a holistic process that maps the entire 2-digit string 

onto a magnitude, represented as a position on a number line. In educated adults, the number line is 

thought to be linear, but the “number sense” hypothesis proposes that a logarithmic scale underlies 

our intuitions of number size, and that this compressive representation may still be dormant in the 

adult brain. We investigated these issues by asking adults to point to the location of two-digit numbers 

on a number line while their finger location was continuously monitored. Finger trajectories revealed 

a linear scale, yet with a transient logarithmic effect suggesting the activation of a compressive and 

holistic quantity representation. Units and decades digits were processed in parallel, without any 

difference in left-to-right versus right-to-left readers. The late part of the trajectory was influenced by 

spatial reference points placed at the left end, middle, and right end of the line. Altogether, finger 

trajectory analysis provides a precise cognitive decomposition of the sequence of stages used in 

converting a number to a quantity and then to a position. 

2.1. Introduction 

This chapter describes the first in a series of studies in which we explored the conversion of 

two-digit symbolic numbers, presented as digits, into quantities. The study described here was 

centered on three major questions: holistic versus decomposed encoding of multi-digit 

quantities, the use of a logarithmic or a linear quantity scale, and sequential versus parallel 

processing of the digits in multi-digit numbers. 

2.1.1. Holistic vs. decomposed quantity representation 

One of the main disputes about two-digit quantity representation is between the holistic and 

decomposed approaches. The holistic approach claims that two-digit numbers are represented 

as holistic quantities: similarly to single digits, two-digit numerals are recognized as a whole 

and mapped onto a memorized quantity (Dehaene et al., 1990; Fitousi & Algom, 2006; Reynvoet 

& Brysbaert, 1999). The decomposed approach proposes that when a person deals with symbolic 

multi-digit numerals, only the quantities associated with the individual digits are activated and 

manipulated (Nuerk & Willmes, 2005). For example, the decomposed approach postulates that 

                                                 
° This chapter is an article published as Dotan, D., & Dehaene, S. (2013). How do we convert a number into a finger 
trajectory? Cognition, 129(3), 512–529, doi:10.1016/j.cognition.2013.07.007. The text here is identical with the 
published article, except reformatting and removing some parts that would, if remained, repeat other sections of 
this dissertation.  
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comparing two 2-digit numbers is achieved using two separate comparisons – one of the decade 

digits and another of the unit digits (Meyerhoff et al., 2012; Moeller, Fischer, et al., 2009; Nuerk 

& Willmes, 2005). 

The holistic-decomposed debate often made use of the fact that it takes longer to compare 

two digits when they are farther apart (Moyer & Landauer, 1967). This distance effect was taken 

to show that the comparison is performed by converting numbers from the decimal notation to 

an internal quantity code. The holistic model was supported by the finding of a continuous 

distance effect even in a comparison task where participants had to compare two-digit number 

targets to a fixed reference such as 55 (Brysbaert, 1995; Dehaene et al., 1990). Crucially, the 

unit distance affected the comparison time even when the decade digits were different (e.g., 

comparing 69 with 55 is faster than comparing 61 with 55), and in certain experimental settings 

there was no discontinuity at decade boundaries (Dehaene, 1989; Dehaene et al., 1990; Hinrichs, 

Yurko, & Hu, 1981). To account for this finding, a decomposed model must assume that the 

unit digits are compared even when they are numerically irrelevant, and that an incompatible 

unit comparison result interferes with the decade comparison and slows it down. Such an 

explanation predicts that if the onset of the unit digits is manipulated to be slightly earlier than 

the decade digit onset, the irrelevant unit comparison should have greater effect and therefore 

increase its interference in RT. This prediction was refuted, thereby supporting the holistic 

model (Dehaene et al., 1990). 

In a slightly different comparison task, however, in which the subjects have to decide which 

of two simultaneously presented 2-digit numbers was the larger, the decomposed approach was 

supported by the discovery that the distance effect is modulated by decade-unit compatibility: 

for equal overall distance, pairs of two-digit numbers are compared faster when the units 

comparison result is compatible with the two-digit comparison result (e.g., 32 versus 47, where 

2 is smaller than 7) than when the units comparison is incompatible (e.g., 37 versus 52, where 

7 is larger than 2). The decomposed model can explain this compatibility effect as an 

interference from the incompatible unit comparison (Macizo, Herrera, Román, & Martín, 2011; 

Nuerk, Kaufmann, Zoppoth, & Willmes, 2004; Nuerk, Weger, & Willmes, 2001; Nuerk & 

Willmes, 2005). The holistic model cannot explain the compatibility effect because such a 

model considers only the overall distance between the compared numbers. The decomposed 

model was also supported by a recent study that showed a unit digit quantity effect in two-digit 

number bisection (Doricchi et al., 2009). However, other studies failed to support the 
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decomposed model because they found no decade-unit compatibility effect, both in number 

comparison (Ganor-Stern, Pinhas, & Tzelgov, 2009; Zhang & Wang, 2005; Zhou, Chen, Chen, 

& Dong, 2008) and when using semantic priming paradigms (Reynvoet & Brysbaert, 1999; 

Reynvoet, Brysbaert, & Fias, 2002).   

Holistic and decomposed representations are not necessarily mutually exclusive. Number 

comparison studies suggest that the decade-unit compatibility effect is found when the 

compared numbers are presented simultaneously but not when they are presented sequentially, 

suggesting that subjects can adopt either a holistic or a decomposed strategy according to task 

demands (Ganor-Stern et al., 2009; Zhang & Wang, 2005; Zhou et al., 2008; but see Moeller, 

Nuerk, & Willmes, 2009 for an alternative explanation that conforms to a decomposed 

approach).  

2.1.2. Compressive versus linear quantity representation 

Much evidence shows that the internal quantity representation is tightly related with space, 

and that quantities are represented along a mental number line: in left-to-right readers at least, 

the magnitude of numbers influences manual responses made in the right or left side of space 

(Dehaene, Bossini, & Giraux, 1993; Shaki, Fischer, & Petrusic, 2009), eye gaze direction 

(Loetscher, Bockisch, Nicholls, & Brugger, 2010; Ruiz Fernández, Rahona, Hervás, Vázquez, 

& Ulrich, 2011), and the direction to which spatial attention is shifted (Fischer, Castel, Dodd, 

& Pratt, 2003). Furthermore, magnitude was shown to be encoded not only categorically as 

“small” or “large”, but in a continuous manner (Ishihara et al., 2006).  

A common paradigm to explore the quantity representation consists in analyzing how 

individuals map numbers to positions on a number line. How subjects map numbers to space is 

assumed to reflect, at least in part, the structure of the mental number line, and hence of the 

quantity representation (Barth & Paladino, 2011; Berteletti, Lucangeli, Piazza, Dehaene, & 

Zorzi, 2010; Booth & Siegler, 2006; Cappelletti, Kopelman, Morton, & Butterworth, 2005; 

Siegler & Booth, 2004; Siegler & Opfer, 2003; von Aster, 2000; but see Núñez, Cooperrider, & 

Wassmann, 2012). Number-to-position studies showed that young children initially map 

quantities using a compressive scale that resembles a log function, but this changes into a linear 

encoding during the first years of school (Berteletti et al., 2010; Booth & Siegler, 2006; Opfer 

& Siegler, 2007; Siegler & Booth, 2004; Siegler & Opfer, 2003). The log-to-linear shift was 

hypothesized to result from education, and indeed compressive encoding was found in 

uneducated non-western adults but linear encoding was found in American adults (Dehaene et 
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al., 2008). Interestingly, a compressive quantity scale can still be found in educated adults in 

other tasks that tap an implicit level of representation: inattentive mapping of non-symbolic 

quantities to position along a line (Anobile et al., 2012), quantity estimation with non-spatial 

responses (Núñez et al., 2011), price estimation (Dehaene & Marques, 2002), number bisection 

(Lourenco & Longo, 2009), and randomness judgment for sequences of numbers (Banks & 

Coleman, 1981; Viarouge et al., 2010). Viarouge et al. were even able to define the compressive 

scale more precisely, because their results fit a log function better than a power function.  

The existence of a compressive internal number scale is also supported by neuronal 

recordings in macaque monkeys: neurons tuned to number in parietal and prefrontal cortex 

exhibit a Gaussian tuning curve only when plotted on a logarithmic scale (Nieder & Miller, 

2003). Functional MRI experiments in human adults strongly suggest that such a representation 

continues to exist in the adult brain, at least for non-symbolic numerosities presented as concrete 

sets of objects (Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). 

Another kind of evidence comes from studies showing that reaction time is correlated with 

the logarithm of the target number (Brysbaert, 1995; Dehaene, 1989; Dehaene et al., 1990). 

Such findings may imply a logarithmic (or compressive) quantity encoding, but they can also 

be explained if quantity encoding is linear and is increasingly fuzzy as numbers grow larger (the 

scalar variability model, Cordes, Gelman, Gallistel, & Whalen, 2001; Gallistel & Gelman, 

1992). 

In summary, evidence exists for both linear and compressive quantity representations. The 

two representations were found to co-exist even in the same individuals, when tested in different 

tasks or in different conditions (Anobile et al., 2012; Dehaene et al., 2008; Lourenco & Longo, 

2009; Viarouge et al., 2010). 

2.1.3. Parallel versus sequential processing of multi-digit numbers 

Another question concerning multi-digit numbers is whether the digits are processed in 

parallel or sequentially. For words with fewer than 8 letters, expert readers seem to process all 

of the letters in parallel (Lavidor & Ellis, 2002; Weekes, 1997), and it could be expected that 

the same would occur with numbers. Indeed, findings from two-digit number comparison 

suggest that even when effects compatible with a decomposed representation are observed, the 

quantities of the separate digits are processed in parallel (Moeller, Fischer, et al., 2009). 

However, longer numbers also involve sequential processing, in number comparison tasks 

(Hinrichs et al., 1982; Meyerhoff et al., 2012), in recall tasks (Hinrichs & Novick, 1982), and in 
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reading aloud and symbolic comprehension tasks such as same-different judgment and 

identification of specific sequences of digits (Friedmann, Dotan, & Rahamim, 2010). 

2.1.4. The present study 

The research described in this chapter seeks to understand the process of encoding two-digit 

Arabic numbers as quantities. To examine this issue we introduce a novel methodology, which 

is a variation of the number-to-position task. In the traditional number-to-position task, 

participants are shown numbers and are required to mark, with a pencil, the corresponding 

position along a number line. By contrast, our participants performed the number-to-position 

task on an iPad tablet computer, which allowed continuous measurement of the finger trajectory. 

On each trial, a two-digit number between 0 and 40 was shown on the iPad screen, and the 

participants dragged their finger from a fixed starting point at the bottom of the screen to a 

position along a number line that was at the top of the screen (see Fig. 2.1). The experiment 

software digitized the entire finger trajectory. Finger trajectories are a powerful measure because 

the finger position at a certain time during the trial tightly tracks the underlying cognitive 

operations (Finkbeiner & Friedman, 2011; Finkbeiner et al., 2008; Longtin & Meunier, 2005; 

Marghetis, Núñez, & Bergen, 2014; Santens et al., 2011, and see Finkbeiner, Coltheart, & 

Coltheart, 2014; Friedman, Brown, & Finkbeiner, 2013; Song & Nakayama, 2008a, 2008b, 

2009, regarding the use of finger trajectories to analyze non-numeric cognitive processes). Thus, 

analyzing the finger positions at different times in the trial could reveal how the quantity 

representation of two-digit numbers evolves over time. This is an advantage over using trial-

level measures such as errors, reaction times, or the final position along a number line, because 

such measures can examine only the quantity representation at the end of the trial, whereas the 

“number-to-position trajectory” paradigm also allows examining the transient quantity 

representations. 

Our study evaluated a broad array of distinct theoretical models that aim to explain how the 

number-to-position task is performed and what kind of quantity representation is used in this 

task. The different models assume either holistic or decomposed representations, linear or 

logarithmic quantity scales, similar or different processing of one-digit and two-digit numbers, 

and the last model also assumes a spatial strategy to aim the finger to the desired position. Each 

of these models predicts a certain spatial mapping of numbers to positions as well as a certain 

temporal pattern of finger trajectories. By analyzing various parts of the finger trajectories, we 

can reject some models and probe which of the models best fits the observed trajectories. 
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Fig. 2.1. Task and screen layout. Participants were asked to point to the correct location for a 2-digit 

number on a horizontal line that extended from 0 to 40. On each trial, they first placed their finger on 

a bottom rectangle. The target appeared when they started moving their finger upward. The entire 

trajectory was digitized, and the measures were converted into instantaneous estimates of finger 

coordinates and implied endpoint. 

The predictions of the models are illustrated in Fig. 2.2 as simulations of the predicted 

trajectories. These simulations are admittedly over-simplified and are provided only for 

visualization purposes. They ignore several parameters such as the fact that the finger changes 

its direction gradually and not abruptly, the fact that the finger velocity is not constant, and the 

existence of noise. Their purpose is only to convey graphically the variables that are supposed 

to influence finger trajectories. 

All six simulations in Fig. 2.2 assumed, for illustration only, an overall movement time (from 

starting point to the number line) of 1300 ms and a constant finger velocity. They also assumed 

that all trajectories begin with an exact upwards movement of the finger and deviate at a certain 

time. The models differ from each other with respect to the direction each trajectory takes once 

they branch apart.  

1. The holistic model (Fig. 2.2a) assumes a holistic quantity representation mapped to a 

linearly-organized number line. The simulation assumes that at 400 ms the trajectories 

branch towards the target position along a linearly-organized number line. Note that 

although this model is called “holistic”, the same shape of trajectories is also predicted by 

a decomposed model that assumes that the unit and decade digits are processed in parallel 

and affect the finger position in exactly 1:10 ratio. 
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2. The sequential model (Fig. 2.2b) assumes that the quantity representation is decomposed, 

and that the decade digit is processed earlier than the unit digit. The simulation assumes 

that at t=400 ms the finger starts moving towards the position of the relevant whole decade 

(because the unit digit information is still unavailable at this time). At t=600 ms the unit 

digit was processed too and again the trajectories branch apart, this time towards the correct 

target position along a linearly-organized number line. 

3. The next model (Fig. 2.2c) assumes a linear organization of the numbers along the number 

line, with faster processing of single-digit numbers than of two-digit numbers. The 

simulation assumed that the single-digit trajectories branch apart at t=400 ms, and at this 

time the finger starts moving towards the target position along a linearly-organized number 

line. The two-digit trajectories branch at t=600 ms, and in this case too, the finger starts 

moving towards a linearly-organized number line. 

4. The transient log model (Fig. 2.2d) assumes that a holistic, logarithmic quantity 

representation is first constructed, and this representation is then overridden by a linear 

representation. The simulation assumed that at t=400 ms the finger starts moving towards 

the target position along a logarithmically-organized number line, and at t=600 ms the 

finger direction is re-adjusted to aim towards a linearly-organized number line. 

5. The decomposed digits model (Fig. 2.2e) assumes that on top of the two-digit quantity, the 

quantities of each of the digits would also affect the finger position. One possible 

mechanism which may create such an effect is the existence of an intermediate stage in 

which the two digits of the target are not yet fully assigned to their respective unit and 

decades locations (Friedmann, Dotan, & Rahamim, 2010; Greenwald, Abrams, Naccache, 

& Dehaene, 2003). For a transient period, the two digits would therefore be floating and 

potentially submitted to illusory conjunctions (Treisman & Schmidt, 1982): the unit digit 

might be partially bound to the decade location, or vice-versa. The resulting quantity 

representation will be a linear combination of the two-digit quantity with the single-digit 

quantities. Our simulation represents the single-digit quantities using a “decomposed-digit 

factor” which is defined as the average of the two digits, linearly rescaled to the range 

between -2.5 and 2.5. The simulation assumes that at t=400 ms the finger starts moving 

towards the position of the target number plus the “decomposed-digit factor”, and at t=1000 

ms the finger direction is re-adjusted towards the exact linear position of the target number. 
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Fig. 2.2. Six idealized models for spatial trajectories. Models are explained in detail in the main text. 

6. The spatial reference points model (Fig. 2.2f) is specifically concerned with the process of 

translating a quantity into a spatial position on the visually presented number line. Inspired 

by previous work on the role of reference points in proportionality judgments (Hollands & 

Dyre, 2000; Spence, 1990), it assumes that the target’s position on the number line is 

estimated with respect to three reference points: the two ends of the number line (0 and 40) 
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and its middle (20). The position to which a number is mapped is assumed to be obtained 

by comparing the relative proportions of the estimated distances to the nearest two reference 

points (e.g., 7 is positioned by comparing its distances from 0 and from 20). Crucially, these 

estimated distances are scaled by a compressive function, giving rise to a non-linear bias 

term which pushes the participant’s responses away from the reference points. Previous 

findings supported this notion (Barth & Paladino, 2011; Sullivan, Juhasz, Slattery, & Barth, 

2011). To account for their findings, Barth and Paladino used a power function with the 

exponent as a free parameter, but in the present study, to avoid over-fitting (Opfer, Siegler, 

& Young, 2011) we used a log-based function log(d+1), where d is the linear distance. 

Thus, the exact position of 27 is calculated by the proportion between its estimated 

distances from 20 and 40, i.e., between log(7+1) and log(40-27+1), using the formula 
��� (���)

���(���)� ��� (�
��) = .4407. This proportion is then rescaled within the interval 0-20 to 

obtain a location on the complete range 0-40, i.e.: 20 + 20 * .4407 = 28.814 (very similar 

results were obtained with a power function with exponent 0.5, as proposed by Krueger 

(2010). In fact, the correlation between the log-based and the power-based functions over 

the integers between 0 and 40 is r = .9994).  

The six models are not necessarily mutually exclusive. It is possible that different quantity 

representations dominate different parts of the trajectory. Two of the models even make this 

assumption explicitly: both the transient log and the decomposed digits models assume an 

intermediate representation that is then overridden by a linear representation. Our methodology 

allows for this possibility because we analyze the finger position in several time points along 

the trajectory. Another possibility is that two quantity representations co-exist simultaneously. 

This should result in a finger position that is some weighted average of the two quantity 

representations. Our methodology allows for this possibility by using regression analyses in 

which predictors from several theoretical models are put into a single regression model. 

2.2. Method 

2.2.1. Materials and Procedure 

The experiment was performed on an iPad tablet computer1. Numbers between 0 and 40 

were presented on screen, and the participants were required to point with their index finger at 

                                                 
1 A demo of the application can be found in http://www.trajtracker.com. 
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the corresponding position along an unmarked number line. Each target number was presented 

10 times, so there were 410 trials, presented in random order. 

Each trial began with a black screen with a horizontal number line at the top, marked with 

the labels 0 and 40 in its ends (see Fig. 2.1). The number line remained on the screen throughout 

the experiment session. When the participants touched the initiation rectangle, a trial started and 

a fixation indicator (+) appeared above the middle of the number line. When the participants 

started moving their finger towards the number line, the fixation symbol was replaced by the 

target number and the participants moved their finger to what they judged to be the 

corresponding position on the number line. When the finger crossed the number line the target 

number disappeared and a green feedback arrow showed where the finger actually hit the 

number line. The arrow did not show how accurate the response was – its purpose was only to 

help the participant improve the finger’s motor aiming. The participants could then initiate the 

next trial whenever they wanted to, which was usually immediately. 

The following violations were considered as failed trials: lifting the finger in mid-trial, 

touching the screen with more than one finger, moving the finger backwards, and starting a trial 

with sideways (rather than upward) movement. Furthermore, to ensure that the experiment 

provided continuous trajectory information, minimal velocity was enforced except the first 300 

ms of each trial. The finger had to reach the number line within two seconds and 1/3 of the 

vertical distance within one second, with linear interpolation. Furthermore, a minimal finger 

velocity of 6 mm/sec was required at all times. Failed trials were excluded from all analyses and 

their target numbers were presented again later in the experiment. Five participants, who had 

more than 25 failed trials (5.7%), were excluded. 

2.2.1.1. Technical Specifications 

The experiment used an Apple iPad device and the software was written in Objective-C. The 

iPad screen size is 197x148mm. The resolution of display and finger tracking was 1024x768 

pixels. The device was placed in landscape orientation. The screen background was black 

throughout the experiment. The number line was white, 844 pixels long (162mm), two pixels 

wide, and was located 80 pixels below the top of the screen, centered. The target number was 

shown in Arial bold white font, centered above the number line, and the digits were 10 mm high. 

The numbers 0 and 40 at the ends of the number line were shown in light grey Helvetica font 

and were 5 mm high (so they were a little less salient than the target number). The height and 
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width of the fixation cross was 7.7 mm. The feedback arrow was green, 7.7 mm high, and was 

pointing downwards with its tip touching the number line. 

The rectangular area that the participant touched to initiate a trial was dark grey and its size 

was 60x40 pixels, in landscape orientation. The target onset was triggered when the finger 

reached a fixed distance from the bottom of the screen (50 pixels here, but 70 px in some 

subsequent experiments). 

2.2.2. Training 

The experiment began with a short training that was done in four stages, each stage 

introducing some of the experiment rules. The first stage of training resembled the experiment 

procedure described above, with two differences: no minimal velocity was enforced, and no 

target number appeared. Instead of the target number, a downward-pointing red arrow appeared 

somewhere above the number line, and the participant was instructed to aim her finger “towards 

the red arrow”. The second training stage was the same, but it also enforced minimal finger 

velocity. The minimal velocity was visualized as an upward-moving horizontal line, and the 

participants were instructed to maintain their finger above the line. In the third training stage, 

minimal velocity was still enforced but the guiding horizontal line was not shown. The last 

training stage was identical to the experiment procedure, i.e., the targets were no longer red 

arrows but numbers between 0 and 40. The participants were shown the positions of 0, 20, and 

40 but not of other numbers. In each training stage the experimenter first demonstrated what 

should be done, and the participant then performed a few training trials. 

2.2.3. Participants 

21 healthy adults participated voluntarily in the experiment. Ten of them were native 

speakers of Hebrew, which is read from right to left (RTL), and the rest were left-to-right (LTR) 

readers – 9 French, one Italian, and one Thai. Numbers in Hebrew are read from left to right, 

like in English, and are printed using the same characters 0-9. All participants were right-

handed, and their mean age was 35;5 (SD=10;7). There was no significant age difference 

between the LTR and RTL groups (t(19) = .66, two-tailed p = .52). 

2.2.4. Data Encoding 

Several measures were calculated per trial. The trial  endpoint is the position in which the 

finger crossed the number line, encoded using the number line’s scale (0-40; endpoints were out 

of this range if the participant pointed outside of the number line). The endpoint bias is the 
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difference between endpoint and the target number, with positive values indicating rightward 

bias. The endpoint error is the absolute value of endpoint bias. Finally, a trial movement time is 

the time elapsed from the target onset until the finger crossed the number line. 

The finger trajectory throughout the trial was recorded as a sequence of x,y coordinates with 

timestamps attached to each. The finger position was sampled at the highest possible rate 

provided by the iPad (M=16 ms between subsequent samples, SD=1 ms) and then transformed 

into a sampling rate of 100Hz using cubic spline interpolation. The fixed sampling rate allows 

comparing finger coordinates in identical post-target-onset times between different trajectories. 

2.2.5. Data Cleanup 

Failed trials and trials with outlier endpoints were excluded from all analyses. A trial was 

considered as failed if one of the experiment’s restrictions were violated, e.g., if the finger was 

lifted from the screen or was moved too slowly, or if the movement time was less than 200 ms. 

An outlier endpoint was defined with respect to endpoints of the 10 trials with the same target 

number, as an endpoint that exceeded the 25th or 75th percentile by more than 1.5 times the inter-

quartile range.  

2.2.6. Statistical Analysis 

Each of the six models was analyzed using a two-stage analysis. The first stage was a set of 

regression analyses, one per participant. The dependent variable in these regressions was the 

finger x coordinate, and the predictors depended on the theoretical model being assessed. For 

example, the transient log model assumes that the logarithmic and linear representations co-

exist, so it was assessed by a regression with two predictors – the target number (between 0 and 

40) and its logarithm. 

Each of these regression analyses was carried out per time point, in 50 ms intervals. This 

allowed examining how the quantity representation evolves over time. For example, the 

logarithmic model predicts that the log predictor will be strong in the regressions done for early 

time points, but that the linear predictor will be strong in late time points. 

The second stage checked which of the predictors showed a consistent pattern over all 

participants – namely, whether the b values, which were obtained for a specific predictor in a 

specific time point for each of the participants, were significantly different from zero. This was 

assessed using repeated measures ANOVA which compared the b values with zero values (this 

was a within-subject factor), with a between-subject factor of language group, and the 
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participant as the random factor. Non-significant b values were also included in this analysis. 

These ANOVAs were run per predictor and per time point, in 50 ms intervals. One-tailed p 

values were used when the mean b value was positive (which indicates a predicted result), and 

two-tailed p values were used when mean b was negative. 

2.3. Results 

2.3.1. General performance 

The average movement time (from target onset until the finger reached the number line) was 

1.11 seconds (SD = .14). The mean rate of endpoint outliers was 4.9% (SD = 1.8%). Excluding 

outliers, the mean endpoint error was 5.9 mm (SD = 1.59 mm), i.e., 1.45 numerical units on the 

162 mm long, 0-40 number line. The mean endpoint bias was -.45 numerical units (SD = .34), 

i.e., a small leftward bias. The average rate of failed trials was 2.7% (SD = 1.4%). The total of 

238 failed trials had the following failure reasons: minimal velocity violation (44.5%), multiple 

fingers touched the screen (20.2%), finger backward movement (10%), finger lifted from screen 

(9.7%), trials shorter than 200 ms (8.8%), and starting the trajectory sideways rather than 

upwards (6.7%). 

 
Fig. 2.3. Two depictions of finger trajectories. (a) Spatial depiction of sample trajectories of one 

participant (finger location on the horizontal and vertical axes) to four distinct target numbers.  

(b) Spatial depiction of median trajectories for each target number, averaged across all participants. 

The LTR group was slightly quicker than the RTL group: the mean movement time was 1.06 

seconds in the LTR group vs. 1.18 seconds in the RTL group (unpaired t(19) = 2.15, p = .04). 

The LTR group was also less accurate, with a mean endpoint error of 1.61 vs. 1.27 in the RTL 

group (t(19) = 2.13, p = .05). There were no significant differences between the two groups with 

respect to the rates of outliers and failed trials (t(19) < 1.25, p > .22).  
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Fig. 2.3a shows a typical example for the shape of trajectories in the experiment (one line 

per trial). It shows the raw trajectories of one of the participants when responding to the target 

numbers 1, 12, 29, and 37. Fig. 2.3b shows the trajectories, averaged over all trials and 

participants. For each target number, a median trajectory was calculated per participant by re-

sampling the raw trajectories into equally spaced 201 time points and finding the median 

coordinate per time point (Santens et al., 2011; Song & Nakayama, 2008a). These median 

trajectories were then averaged across participants. 

2.3.2. Assessment of the models 

2.3.2.1. The holistic model 

The holistic model assumes that the task is performed by mapping the two-digit quantity to 

a linearly organized number line. This model was examined using regression analysis in which 

the dependent variable was the finger x coordinate, linearly transformed to the 0-40 scale of the 

number line (this variable is hereby denoted as X0-40). There was a single predictor – the two-

digit target number (which will be hereby denoted as N0-40). One regression was run per 

participant and per time point, in 50 ms intervals. 

Fig. 2.4a shows the mean b values of N0-40 over all participants in all time points. The b 

value (hereby denoted as b[N0-40]) gradually increases as the trajectories branch apart. The mean 

r2
 value starts at 1% (SD = 1.4%) at t=450 ms and rises up to 97.2% (SD 1.7%)  at the end of the 

trajectories. 

A between-participant analysis was done by submitting the b[N0-40] values of all participants 

to repeated measures ANOVA (as described in section 2.2.6) with b versus zero as a within-

subject factor, the language group as a between-subject factor, and the participant as the random 

factor. This showed that b[N0-40] was significantly larger than zero as early as 450 ms post 

stimulus onset and in all subsequent time points.  

These results are in line with the holistic model. The real question, however, is whether the 

holistic-linear trend would remain strong even when compared with other models. As the next 

sections will show, the answer to this question is yes. 

2.3.2.2. The transient log model 

The transient log model assumes that mapping a number to the number line is governed by 

a logarithmic quantity representation in the early part of the trajectories, but by a linear-holistic 

quantity representation in the later parts. This model was examined using regression analysis 



Chapter 2. How do we convert a number to a finger trajectory? 

 22

with X0-40 as the dependent variable, and with two predictors: the target number N0-40, and a 

logarithmic predictor denoted as log'(N0-40), which is log(1+N0-40), linearly transformed so that 

log'(0) = 0 and log'(40) = 40 (this transformation was used to allow meaningful comparison 

between the b values of the logarithmic and linear predictors). One regression was run per 

participant and per time point, in 50 ms intervals. The resulting b values were compared with 

zero using repeated measures ANOVA with b versus zero as a within-subject factor, the 

language group as a between-subject factor, and the participant as the random factor. The 

transient log model predicts an intermediate stage during which b[log'(N0-40)] will be 

significantly larger than zero. 

The results confirm this prediction (Fig. 2.4b). b[log'(N0-40)] was significantly larger than 

zero from 500 ms  to 1050 ms, which indicates that a logarithmic quantity representation exists 

during this intermediate time window and then disappears. A linear representation of quantity 

also exists, as demonstrated by the finding that b[N0-40] was significantly larger than zero in all 

time points as of 450 ms. Note that at the time points in which the log predictor was significant, 

the linear predictor was significant too. This shows that the logarithmic quantity representation 

does not precede the linear quantity representation but exists in parallel to it. Finally,  

b[log'(N0-40)] was significantly smaller than zero at all time points from 1300 ms and onwards. 

There was no significant difference between the language groups for any of the two predictors 

(F(1,19) < 2.1, p > .16). 

The reliable contribution of log'(N0-40) could have an alternative explanation: it could be 

attributed to a logarithmic quantity representation of each of the digits, rather than to a 

logarithmic representation of the two-digit target number. According to such an explanation, the 

reason that log'(N0-40) is a good predictor is its correlation with the logarithms of the decade and 

unit digits (indeed, the correlation between log'(N0-40) and log'(decade-digit) + log'(unit-digit) 

is high, r = .95). To evaluate this alternative explanation, the trajectory data was submitted to 

regression analysis with X0-40 as the dependent variable and with four predictors:  

N0-40, log'(N0-40), log’(decade-digit), and log’(unit-digit). The resulting b values were compared 

with zero using repeated measures ANOVA with b versus zero as a within-subject factor, the 

language group as a between-subject factor, and the participant as the random factor. The 

alternative explanation predicts that this analysis will show significant contribution of the 

single-digit predictors, log'(decade-digit) and log'(unit-digit), but the results refuted this 
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prediction: b[log’(decade-digit)] and b[log’(unit-digit)] were not significantly larger than zero 

in any time point – in fact, they had negative values in all time points later than 650 ms. 

 
Fig. 2.4. Incremental regression models of the finger trajectories. Each graph results from a multiple 
linear regression on horizontal finger location (X0-40), performed separately for each subject and each 
time-point. The regression weights are then averaged over all participants and plotted as a function of 
time on the x axis. (a) regression with target number; (b) regression with the target and its log, showing 
a transient logarithmic effect (error bars show one standard error across subjects); (c) separate 
assessment of one- and two-digit numbers shows no significant difference between the  
0-9 and 10-40 predictors in early time points; (d) regression with distinct regressors for unit digits and 
decades; (e) final regression model with the target, its unit digit, its log, and spatial reference points; 
(f) The same regression model as in panel e, applied to the implied endpoint of the trajectory. Note 
that the effects appear earlier than in panel e: the implied endpoint provides a better reflection of the 
temporal dynamics of processing, because it directly reflects where the subject is aiming at a given 
time. 

Another alternative explanation is that the logarithmic effect results from a spatial or motor 

bias that is unrelated with the representation of quantities. Such a non-quantity account does not 

specifically predict a leftward or a rightward bias. To evaluate the specificity of the log function 
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as a predictor, we compared it to a left-to-right mirror of this function. The trajectory data was 

submitted to regression with X0-40 as the dependent variable and with N0-40 and the mirrored log 

function as predictors. This mirror function is denoted as revlog'(N0-40) and defined as  

revlog’(x) = 40 - log’(40-x). The resulting b values were compared with zero using repeated 

measures ANOVA with b versus zero as a within-subject factor, the language group as a 

between-subject factor, and the participant as the random factor. Contrary to the alternative 

explanation, revlog'(N0-40) was not a good predictor of the finger position: the average 

b[revlog'(N0-40)] values were negative in most time points, and the negative values were 

significantly lower than zero in time points later than 1300 ms. The spatial/motor alternative 

explanation was also refuted by a control experiment that did not involve numbers but arrows 

as targets, in which no log effect was found (see below in section 2.3.5). 

2.3.2.3. Faster processing of single digits 

This model assumes that numbers are mapped to a linearly-organized number line, but 

single-digit numbers are processed more quickly than two-digit numbers, and consequently the 

trajectories of single-digit numbers would branch earlier than the trajectories of two-digit 

numbers. The model was examined using regression analysis with X0-40 as the dependent 

variable, with the logarithmic predictor log'(N0-40), and with two additional linear predictors:  

N0-9, which was the target number for single-digit trajectories and as zero for two-digit 

trajectories, and N10-40, which was the opposite – the target number for two-digit trajectories and 

zero for single-digit trajectories. One regression was run per participant and per time point, in 

50 ms intervals. The resulting b values were compared with zero using repeated measures 

ANOVA with b versus zero as a within-subject factor, the language group as a between-subject 

factor, and the participant as the random factor. 

The "faster processing of single digits" model assumes a time window during which the 

trajectories of 0-9 have already branched but the trajectories of 10-40 have not yet branched. 

Consequently, at any time point during this time window (and even at later time points), the 

trajectories of 0-9 would be farther apart from each other than the trajectories of 10-40 (see 

Fig. 2.2c), although the trajectories within each of the two groups would be still linearly 

organized. Thus, the model predicts an intermediate stage during which b[N0-9] > b[N10-40]. 

The results (Fig. 2.4c) did not confirm this prediction. A significant difference was found 

between b[N0-9] and b[N10-40] only in relatively late time point (from 700 ms and onwards,  
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F(1,19) > 2.23, p < .05). This finding does not agree with the notion of faster processing of 

single digits2. The ANOVA showed no effect of language group (F(1,19) < 1.2, p > .28). 

2.3.2.4. The sequential model 

The sequential model assumes that the quantity representation is decomposed and that the 

decade digit is processed earlier than the unit digit. The model therefore predicts an early stage 

during which only the decade digit affects the finger position. This model was examined using 

a regression analysis with X0-40 as the dependent variable, with the logarithmic predictor  

log'(N0-40), and with two additional linear predictors: the target number's decade (denoted as D 

and having the values 0, 10, 20, or 30) and the unit digit (U). The trajectory of target number 40 

was excluded from this analysis in order to prevent a possible bias, because there is only one 

value of U for the decade 40, and the trajectory of 0 was excluded to maintain symmetry (but 

the results were similar even with the trajectories of 0 and 40 included). One regression was run 

per participant and per time point, in 50 ms intervals. The resulting b values were compared with 

zero using repeated measures ANOVA with b versus zero as a within-subject factor, the 

language group as a between-subject factor, and the participant as the random factor. 

The sequential model predicts a time window during which b[D] > b[U]. The results  

(Fig. 2.4d) did not confirm this prediction. In fact, they were the exact opposite: there was an 

intermediate time window, from 400 ms to 950 ms, during which b[D] values were significantly 

smaller than b[U] (F(1,19) > 4.8, two-tailed p < .04). The language group did not interact with 

this decade-unit difference (F(1,19) < 1.62, p > .21), and the effect was present in both groups 

(RTL group: from 550 ms to 1000 ms, F(1,9) > 2.42, p ≤ .04; LTR group: from 400 ms to 700 

ms, F(1,9) > 5.76, p < .04), indicating that it was not just due to the group of right-to-left readers 

treating the rightmost digit before the leftmost one. The faster processing of the unit digit was 

found also when the regression was run without the log'(N0-40) predictor (b[D] < b[U] from 350 

ms to 1000 ms, F(1,19) > 4.49, p < .05). 

These results refute the sequential model. And yet, a parallel model is also not sufficient to 

fully explain the results. A parallel model assumes similar effects of decades and units on the 

finger x coordinates, and therefore predicts similar b values for the decade and unit predictors 

(because the decade predictor is the decade digit multiplied by 10) – so such a model cannot 

                                                 
2 In Chapter 3 we will revisit this notion with a slightly different modeling – that smaller numbers, not single digits, 
are processed faster. We will show that this notion is not only supported by the finding but is also crucial to 
understand our task. 
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explain the finding that b[D] < b[U]. The models described in the next two sections, however, 

provide a possible explanation of this finding. 

2.3.2.5. The decomposed digits model 

The decomposed digits model assumes that on top of the two-digit quantity, the quantities 

of each of the digits would also affect the finger position. Such a model would artificially inflate 

the impact of the unit predictor compared to the decade predictor, because in our regressions the 

unit predictor U is the unit digit itself, whereas the decade predictor D is the decade digit 

multiplied by 10. This model can therefore explain the unit-decade difference found in the 

regression in the previous section. Note, however, that the data allow us to exclude a strictly 

serial model in which, for a certain period of time, the two digits are freely floating without any 

binding to position. If that was the case, the b[U] would have transiently been ten times larger 

than b[D]. We did not observe such an extreme effect: at the first point where the two regressors 

became significant (450 ms), the b[U]:b[D] ratio was only 1.64, and it continuously decreased 

to reach the average value of 0.95 at the end of trajectories. This finding suggests that a more 

likely interpretation is that, for a transient period, both the single digits and the two-digit quantity 

are activated in parallel and contribute to the finger trajectory. 

Could we provide a more specific test of this decomposed-digits model? The model predicts 

that the trajectories of number pairs such as 29 and 31 may be reversed, so that, transiently, 29 

would be incorrectly mapped to a position to the right of 31. This is because the large difference 

between the units (9 versus 1) may override the much smaller difference between the decades 

(2 versus 3) or the whole-number quantity (29 versus 31). Indeed, there is prior evidence that 

such decade-unit compatibility effects may confuse two-digit number comparison judgments 

(Macizo et al., 2011; Meyerhoff et al., 2012; Nuerk et al., 2001; Nuerk & Willmes, 2005). 

The general prediction is that, for targets around whole decades, trajectories should tend to 

be reversed, relative to how they would appear if they were simply based on the two-digit 

number quantity. This prediction was examined by analyzing the residuals of the log + linear 

regression (see Section 2.3.2.2). The residuals (xres) were calculated per participant as the delta 

between the x value of the per-target median trajectories and the x value predicted by the log + 

linear regression described above. A median trajectory was created per subject and per target 

number by calculating the median coordinates for equivalent post-stimulus-onset time points (in 

10 ms intervals). Late time points exceeded the movement time of some trajectories; for those, 

the endpoint was used as the x coordinate. The residuals were calculated with respect to the log 
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+ linear regression which was run on the median trajectories. The reason for calculating xres 

based on median rather than raw trajectories was that this allowed pairing together trajectories 

from corresponding targets in the within-subject ANOVA hereby described. 

These residuals were compared in three separate comparisons, centered on each decade: 8-

9 vs. 11-12, 18-19 vs. 21-22, and 28-29 vs. 31-32. Each of these comparisons was done using 

an ANOVA with xres as the dependent variable, two within-subject factors of size (above or 

below decade) and distance from decade (1 or 2), a between-subject factor of language, and 

subjects as the random factor. The decomposed digits model predicts that the trajectories would 

tend to reverse, namely, that xres(28,29) would be larger than x̂res(31,32), and corresponding 

differences around the decades 20 and 10. 

The results confirmed this prediction: xres(28,29) was significantly larger than xres(31,32) in 

550 ms (F(1,19) = 3.83, one-tailed p = .03) and in all subsequent time points (F(1,19) > 8.01, 

one-tailed p ≤ .01). Similarly, xres(8,9) was larger than xres(11,12) in 550 ms and in all subsequent 

time points (F(1,19) > 4.24, one-tailed p ≤ .03). The comparison around 20 resulted in a more 

complicated pattern: the prediction of the decomposed digits model was confirmed only for an 

early time window of 50 ms – 550 ms, during which xres(18,19) was significantly larger than 

xres(21,22) (F(1,19) > 3.66, one-tailed p < .04). However, the results were opposite in the late 

trajectory parts: xres(18,19) was significantly smaller than xres(21,22) in 750 ms and in all 

subsequent time points (F(1,19) > 4.45, two-tailed p ≤ .05). There was no significant effect of 

language group in any of these comparisons (F(1,19) < 3.9, two-tailed p > .06) except a single 

time point (200 ms in the comparison around the decade 30; F(1,19) = 5.21, two-tailed p = .03) 

and no interaction between the language group and the above/below decade factor  

(F(1,19) < 3.79, two-tailed p > .06). 

In summary, the decomposed digit model accounts for the results in the early time window 

around 550 ms:  the finger trajectories do tend to reverse around all whole decades (though note 

that this effect was found in the residuals of the linear + log regression; as Fig. 2.3b shows, the 

effect size was not sufficiently strong to yield a complete reversal of the physical trajectories 

themselves). However, the pattern in late time windows (from 750 ms) is different: trajectories 

tend to be reversed around 10 and 30, but 20 has a repulsion effect that pushes the trajectories 

away (this repulsion effect around 20 is quite visible in Fig. 2.3b). The decomposed digit model 

cannot explain this pattern, but the next model offers a possible explanation. 
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2.3.2.6. The spatial reference points model 

The spatial reference points model assumes that in order to determine the position to which 

a number is mapped, the participant estimates the distances between the number and two out of 

three reference points: the ends of the number line (0 and 40) and its middle (20). The model 

further assumes that this distance estimation is logarithmic and not linear. This model predicts 

that trajectories around 10 and 30 would cluster around the whole decade, and trajectories 

around 20 will be pushed away from 20 (Fig. 2.2f). i.e., the model predicts the pattern of results 

observed for late time windows in the analysis of residuals described in the previous section. 

This model was examined using regression analysis with X0-40 as the dependent variable, 

and with four predictors: the two-digit target N0-40, the logarithmic predictor log'(N0-40), the unit 

digit U (to account for possible effect of quantities of the decomposed digits), and a spatial-

reference-points-based bias SRP. The SRP predictor was the delta between the target number 

and the spatial-reference-points-based estimated position, which was defined like the simulation 

function in section 2.1.4 (f): 

For 0 ≤ N ≤ 20, SRP(N) = 20 ∗ ��� (���)
���(���)� ��� (����) - N              [1] 

For 21 ≤ N ≤ 40, SRP(N) = 20 + 20 ∗ ��� (������)
���(������)� ��� (����) - N 

The b values from this regression were compared with zero using repeated measures 

ANOVA with b versus zero as a within-subject factor, the language group as a between-subject 

factor, and the participant as the random factor. 

The results (Fig. 2.4e) support the spatial reference points model, as well as the assumption 

that the SRP effect occurs in late time windows: b[SRP] was significantly larger than zero in all 

time points as of 650 ms (F(1,19) >4.07, p < .03). As for the other predictors, b[N0-40] was 

significantly larger than zero in all time points as of 450 ms (F(1,19) = 3.25, p = .04 at 400 ms, 

and F(1,19) > 14.71, p < .001 thereafter). b[log'(N0-40)] was significantly larger than zero from 

550 ms to 1050 ms (F(1,19) > 3.8, p < .02). b[U] was larger than zero from 400 ms and onwards 

(this effect was marginally significant from 900 ms to 1250 ms, F(1,19) > 1.88, p < .1, and 

significant in the other time points, F(1,19) > 3.16, p < .05). There were no significant 

differences between the language groups for any of the predictors (F(1,19) < 2.06, p > .16). 

Thus, the line of analyses described above indicated that the position to which a number is 

mapped along the number line is determined by multiple factors: the linear two-digit quantity 
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representation, a logarithmic quantity representation, the decomposed quantity of the unit digit, 

and a spatial-reference-point-based bias. 

2.3.3. Limitations of the spatial reference points model 

The final regression model, described in the previous section, showed that the endpoints 

(and the finger x coordinates in the final trajectory parts) depart from a strictly linear 

organization along the number line. This bias is captured in the model by the spatial-reference-

point function SRP and by the logarithmic predictor (which is significant but with negative 

values, and therefore cannot reflect logarithmic quantity representation). Although the SRP 

predictor was significant and the regression r2 values were high, we believe that the SRP 

function we used is not the ideal explanation for the endpoint bias. One reason for this belief is 

the fact that the log predictor was significant with negative values, which is not explained by 

any theoretical model. Another way to look into this issue is by comparing the actual endpoint 

biases with the prediction of the SRP function. As Fig. 2.5a shows, the SRP function only 

partially resembles the observed endpoint biases. Notably, there seems to be an overall leftward 

bias (mean bias = -.45), which is not predicted by the spatial reference points model. This bias 

was consistent across participants (comparing the participants’ mean endpoint bias versus zero, 

t(20) = -6.23, two-tailed p < .001). 

 
Fig. 2.5. Endpoint biases (averaged over participants) compared to the prediction of the spatial 

reference points model. The “predicted bias” line shows the prediction of the spatial reference points 

model, linearly rescaled to fit the actually observed average bias. The y axis specifies the bias using the 

0-40 scale. 

2.3.4. Clarifying the time course of access to quantity  

Most of the analyses throughout this study were based on the finger x coordinates, and we 

believe that the results showed it to be a powerful measure of the underlying quantity 

representation. However, the finger coordinates offer poor temporal granularity. The reason is 
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that the finger position is slow in responding to cognitive changes, because even after the 

participant changes her cognitive representation of the finger’s target position, there are still two 

things that must happen before the finger coordinate reflects this change: first, the finger must 

change its direction towards the new target position. Second, once the direction changes, it still 

takes time for the finger position to change: in essence, finger position is the time integral of 

direction and therefore smoothes out its fine-grained temporal variations. 

We did not find a good way to eliminate the time it takes to change the finger direction, but 

there is a way to overcome the second factor – the time the finger spends moving in the new 

direction until its position changes. To overcome this factor, we used the finger’s implied 

endpoint at each point along the trajectory rather than its x coordinate. The implied endpoint is 

the position along the number line that the finger would reach if it keeps moving in its current 

direction. First, the x and y coordinates were separately smoothed with Gaussian smoothing  

(σ = 20 ms). The current direction (θt) was then defined as the direction vector between the 

finger x,y coordinates at times t - 10 ms and t. Implied endpoints were cropped so not to exceed 

the number line by more than 5% its length on each side (i.e., to the range [-2, 42] for the number 

line length of 40), and were undefined when the finger moved sideways (|θ| > 80°). 

The regression of the final model was executed again, and this time the dependent variable 

was the implied endpoint. The predictors were the same as before: the two-digit target N0-40, the 

logarithmic predictor log'(N0-40), the unit digit U, and the spatial-reference-points-based bias 

SRP. 

The implied-endpoint-based regression (Fig. 2.4f) showed similar trends to those found in 

the x-coordinate-based regression: the linear factor was significant throughout the trajectory, 

the log factor in an early time window, and the SRP factor in late time windows. Importantly, 

the implied-endpoint-based regression indeed revealed earlier effects than the x-coordinate-

based regression. b[N0-40] was significantly larger than zero at all time points beginning at 350 

ms. b[log'(N0-40)] was significantly larger than zero as early as 400 ms and remained significant 

until 700 ms. b[U] was significantly larger than zero from 250 ms and onwards in most time 

points, and b[SRP] was significantly larger than zero at all time points beginning at 600 ms. 

Thus, the implied endpoint analysis seems to provide a more accurate picture of how the 

cognitive quantity representation evolves over time. 

We also investigated another measure that could have provided a more accurate estimate of 

finger direction and therefore of temporal flow, the time derivative of the finger x coordinate. 
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However, this measure (
��
��) turned out to be less accurate than the implied endpoint – its 

regression revealed the same four factors, but at later time points than the implied endpoint 

regression. 

2.3.5.  Numerical or spatial effects? Control experiment 

Two of the findings described above could have alternative explanations that focus on motor 

factors rather than numerical processes. One such finding is the bias of endpoints from linear 

organization: we suggested that this bias is related to the cognitive representation of quantity or 

position, i.e., it is a bias in the way numbers are mapped to a planned position along the number 

line. An alternative explanation could be that the bias originates in the processes that guide the 

finger to this target position. The second finding is the transient log effect: an alternative 

explanation, mentioned in the end of section 2.3.2.2, attributes this effect to spatial or motor 

processes. 

To assess these possibilities, we administered a control experiment, in which the target 

finger position was indexed non-numerically by an arrow. Importantly, no numbers were 

presented in this control task. If the spatial-reference-points bias originates in a quantity 

representation, no corresponding bias should be observed in this control task. If, however, the 

spatial-reference-points bias originates in non-numeric mechanisms, we expect to find a similar 

bias in the control experiment too. Similarly, if the log effect originates in a spatial/motor 

process, a similar effect should be observed in the control task too. 

2.3.5.1. Participants 

Ten healthy right-handed adults participated voluntarily in this experiment. They were all 

native Hebrew speakers. Their mean age was 34;3 (SD = 12;8). 

2.3.5.2. Method 

The method was similar to the number-to-position experiment, with a single difference: the 

target stimulus was not a number, but a downward-pointing red arrow placed at a specific 

position along the top line. The participants were instructed “to move their finger towards the 

arrow”. Thus, this experiment was conducted exactly like the third training stage of the number-

to-position experiment (see section 2.2.2).  

Each target arrow could appear in one of 41 positions (corresponding with the positions of 

the numbers 0-40), and each position was presented four times, i.e., there were 164 trials in the 
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experiment. No trials were defined as outliers because the number of trials per position (4) was 

insufficient for outlier analysis. 

2.3.5.3. Results 

The average movement time was 762 ms (SD = 167 ms). The mean endpoint error (rescaled 

to 0-40, to allow for comparison with the number-to-position experiment) was .39  

(SD = .1). The mean endpoint bias was .02 (SD = .1). The average rate of failed trials was 1.5% 

(SD = 1.8%). Thus, the aim-to-arrow task was performed faster than the number-to-position 

task, more accurately, and with fewer errors. 

To assess the spatial reference points model, the trajectory data was submitted to regression 

analysis similar to the regressions reported for the number-to-position experiment. The 

dependent variable was X0-40 and there were two predictors: the position of the target arrow 

along the line N0-40, and the spatial-reference-point-based bias function SRP (detailed in 

section 2.3.2.6). The regression b values were compared with zero using t-test. 

The results (Fig. 2.6) showed that b[N0-40] was significantly larger than zero in all time points 

as of 250 ms (F(1,9) > 3.12, p < .01), indicating a linear trend that begins even earlier than in 

the number-to-position experiment. The spatial reference points bias also had a significant 

effect: b[SRP] was significantly larger than zero in all time points from 300 ms to 800 ms (much 

earlier than the value of 700 ms observed in the numerical task). The peak SRP effect size was 

at 450 ms (b[SRP] = .138), and then the SRP effect decreased and in the last part of the 

trajectories it was very small (b[SRP] < .02) and non-significant. Indeed, the organization of 

endpoints was almost perfectly linear (Fig. 2.5b). This pattern is quite different from the pattern 

observed in the number-to-position experiment, in which the SRP effect began in later time 

points, and continuously increased as the fingers approached the number line. 

 
Fig. 2.6. Control experiment, where the subject was asked to point to a flashed arrow: the effect of 

spatial reference points is present at an earlier moment, suggesting that it arises from a non-numerical 

level of representation. The error bars show one standard error across participants. 
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To assess the transient log model, namely, the possibility that some spatial/motor process 

caused the log effect in the number-to-position task, the trajectory data in the aim-to-arrow task 

was submitted to a second regression analysis, which was similar to the regression described 

above, with a single difference – the addition of a third predictor, the logarithmic predictor 

log'(N0-40). The regression b values were compared with zero using t-test. This analysis showed 

that the logarithmic predictor had no significant positive effect in any time window. In fact, 

b[log'(N0-40)] was negative in all time points from 300 ms and onwards, and had significantly 

negative values from 350 ms until 750 ms (t(9) < -2.87, two-tailed p < .02). Thus, the logarithmic 

trend in the number-to-position experiment should not be attributed to spatial or motor factors. 

2.3.5.4. Discussion of the arrows task 

The aim-to-arrow task showed that the trajectories deviate from a purely linear organization 

during an intermediate time window, and that the spatial reference points bias function can 

account for some of this deviation from linearity.  

Why is the SRP bias observed only during an intermediate time window and then 

disappears? Most likely, as the finger approaches the target arrow, the participant can compare 

the finger position with the position of the target arrow (which is still visible on screen), and can 

readjust the finger trajectories to eliminate the bias. 

Whether this explanation is correct or not, the results show a spatial reference points bias in 

a task that does not involve quantity estimation of numbers. It is therefore a plausible assumption 

that the SRP bias in the number-to-position task, unlike the logarithmic bias, originates, at least 

in part, in mechanisms unrelated to the quantity representation of numbers. 

2.4. Discussion of Chapter 2 

This research aimed to clarify the processes involved in converting two-digit Arabic 

numbers into quantities and then into spatial coordinates. We investigated which cognitive 

representations are activated during this encoding process, either transiently or not. We used the 

number-to-position task and tracked the finger trajectories throughout each trial. An analysis of 

the factors influencing finger movement at various points in time revealed the underlying 

representations at various stages during a trial. Different predictors were used to assess five 

different theoretical models of quantity representation, and one model that concerns the way 

these quantities are mapped to spatial positions. 
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The findings suggest a multi-stage process that involves both holistic and decomposed 

quantity representations, with four factors affecting finger movement. These factors are now 

discussed in turn. The two measures of finger movement (x coordinate and implied endpoint) 

yielded very similar results, but we focus primarily on the implied endpoint regressions because 

they provided a more accurate timing of the underlying cognitive processes.  

2.4.1. Linear representation 

The strongest predictor of finger movement was the two-digit target number. This linear 

quantity was a reliable predictor of the implied endpoint at all time points starting at 400 ms 

following stimulus onset, and until the end of the trial. This finding suggests that a linear 

representation of the two-digit quantity (either holistic or decomposed) is quickly accessed and 

dominates the finger movement, as requested by the task. Assuming that it takes approximately 

110-120 ms from motor intention to finger movement (Rammsayer & Stahl, 2007; Jaśkowski et 

al., 2007), our findings suggest that an intention is activated by 280-290 ms. Previous estimates, 

based on event-related potentials, suggest that digit identification takes place at about 160 ms, 

and that a quantity representation of single-digit numerals starts activating at 174 ms and is 

maximally activated approximately 210 ms after target onset (Dehaene, 1996). Based on this 

earlier study, the series of stages dominating the present task, possible organized in a cascade, 

are likely to be: identification (~160 ms), quantity (~170-210 ms), representation of the (linear) 

target location (~290 ms) and first finger deviation towards it (~400 ms). On top of this process 

there could be additional, faster or more automatic processing routes that process single digits 

(as is indicated by the finding of an early contribution of the units digit, see section 2.4.4 below). 

Such automatic processing is in line with previous studies (Pisella et al., 2000). 

2.4.2. Transient logarithmic representation 

The second factor that predicted finger location was the logarithm of the two-digit target 

number. This factor was a reliable predictor of the implied endpoint from 450 ms until 750 ms 

post stimulus onset. It indicates that a compressive quantity representation exists during an 

intermediate time window. We cannot conclude that the quantity representation was strictly 

logarithmic although the regression predictor was a log function, because several other 

compressive functions resemble the log function (e.g. a power function with exponent 0.5) and 

may have accounted for the results just as well.  
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The finding that the log factor started early and then disappeared suggests that the activation 

of a compressive representation is automatic rather than the result of conscious reasoning. 

Indeed, compressive quantity encoding was previously shown in educated adults in several 

paradigms (Anobile et al., 2012; Dehaene & Marques, 2002; Piazza et al., 2004; Viarouge et al., 

2010). In the number-to-position task, however, it was shown only for young children (Berteletti 

et al., 2010; Booth & Siegler, 2006; Opfer & Siegler, 2007; Siegler & Booth, 2004; Siegler & 

Opfer, 2003) and for uneducated adults (Dehaene et al., 2008). The current research extends 

these previous findings and shows that educated adults use a compressive quantity scale even 

in the context of the number-to-position task. Earlier developmental and anthropological studies 

suggested that a few years of education suffice to move away from the innate compressive 

“number sense” that we share with animals (Dehaene et al., 1998; Gallistel & Gelman, 1992) 

and develop a linear sense of number (Booth & Siegler, 2006; Dehaene et al., 2008; Siegler & 

Booth, 2004; Siegler & Opfer, 2003). Nevertheless, the present findings confirm that an intuitive 

representation of numbers on a logarithmic scale remains dormant even in educated adults 

(Viarouge et al., 2010). Indeed, in agreement with previous studies, we found that linear and 

compressive quantity representations co-exist in the same individuals (Anobile et al., 2012; 

Lourenco & Longo, 2009; Viarouge et al., 2010).  

The nature of the quantity scale is a topic of long-lasting debate between two different views. 

Some researchers showed how speed and accuracy decrease logarithmically as numbers become 

larger or closer, and suggested that these findings provided evidence for a compressive quantity 

scale (Brysbaert, 1995; Dehaene et al., 1990). A different interpretation of such findings, 

however, was offered by the scalar variability model, which proposes that quantities are encoded 

using a linear scale but the noise surrounding the quantity representation increases with number 

size (Brannon, Wusthoff, Gallistel, & Gibbon, 2001; Cordes et al., 2001; Gallistel & Gelman, 

1992; Whalen, Gallistel, & Gelman, 1999; but see Dehaene, 2001, 2003 for a discussion). Both 

the logarithmic model and the scalar variability model hold that it is harder to discriminate 

between large numbers than between small numbers, and therefore the two models are quite 

hard to separate, as they make very similar predictions about experimental measures such as 

reaction time, accuracy, and discriminability of numbers, and as we shall see in Chapter 3 – 

even about finger trajectories. 
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2.4.3. Holistic two-digit quantity representation 

The finding of a logarithmic contribution to finger position indicates that the quantity 

representation is not only compressive but also holistic. A decomposed model could have 

explained the logarithmic factor as an artifact of logarithmic encoding of the single-digit 

quantities, but this alternative explanation was explicitly tested and ruled out, as we found a 

better fit of finger position with a log function of the whole 2-digit number. Thus, the results 

supports a holistic model, in agreement with previous studies (Dehaene et al., 1990; Ganor-

Stern et al., 2009; Reynvoet & Brysbaert, 1999; Zhang & Wang, 2005; Zhou et al., 2008).  

The results also do not support a sequential model, according to which the decade digit is 

processed before the unit digit. No time window was found in which the effect of the decade 

digit on the finger movement was larger than that of the unit digit. The results are therefore in 

accord with previous studies that showed parallel processing of two-digit numbers (Friedmann, 

Dotan, & Rahamim, 2010; Meyerhoff et al., 2012; Moeller, Fischer, et al., 2009). We also found 

no evidence that single-digit numbers are processed faster than two-digit numbers, as might be 

suggested by their simpler notation or higher frequency (Dehaene & Mehler, 1992): trajectories 

of single digit numbers did not branch apart earlier than trajectories of two-digit numbers (but 

see Chapter 3 for further investigation of this point). 

Although the present study presents strong evidence in favor of a holistic processing of  

2-digit numerals, this does not mean that numbers cannot be represented in a decomposed 

manner. As we reviewed in the introduction, other studies have presented evidence for 

decomposed processing. Subjects seems to strategically choose to process two-digit quantities 

holistically or in a decomposed manner, with different contexts facilitating different 

representations (Ganor-Stern et al., 2009; Greenwald et al., 2003; Reynvoet & Brysbaert, 1999; 

Zhang & Wang, 2005; Zhou et al., 2008). Some paradigms, such as the number-to-position task 

and the linear-distribution judgment task used by Viarouge et al. (2010), may encourage 

estimation and therefore facilitate holistic processing. Conversely, exact processing of several 

multi-digit stimuli may encourage decomposition strategies. Indeed, decomposed processing 

was often revealed when subjects had to compare two 2-digit numbers (Meyerhoff et al., 2012; 

Moeller, Fischer, et al., 2009; Nuerk & Willmes, 2005). A holistic strategy in this task would 

require encoding two separate 2-digit quantities almost simultaneously, which may be difficult. 

The number-to-position paradigm is simpler than number comparison because it presents a 

single target number per trial. In accord with this view, holistic processing was found in other 
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tasks that showed only a single 2-digit number at a time (Dehaene et al., 1990; Ganor-Stern et 

al., 2009; Reynvoet & Brysbaert, 1999; Zhang & Wang, 2005; Zhou et al., 2008), whereas 

studies that presented more complicated stimuli – numbers with four or six digits – revealed that 

the digits can be processed sequentially (Hinrichs et al., 1982; Meyerhoff et al., 2012). Chapter 4 

will examine the issue of decomposed processing in more detail. 

2.4.4. Effect of unit digit 

A third factor influencing finger position was the unit digit, which was a reliable predictor 

of the implied endpoint from 300 ms post stimulus onset. The unit digit effect is also shown by 

the finding of a trajectory bias that corresponded with the unit digit: trajectories of target 

numbers with a small unit digit (1 or 2) were biased to the left compared to trajectories with a 

large unit digit (8 or 9). Three models can account for these findings: decomposed encoding of 

single-digit quantities, sequential processing of the 2-digit numbers (first the unit digit and then 

the decade digit), or transposition of the two digits. All these models focus on decomposed 

processing of the two digits, and the first model also assumes decomposed single-digit 

quantities. 

The decomposed quantities model assumes that on top of the two-digit quantity, the single-

digit quantities are encoded too, and thus the finger is influenced by their mean value. It could 

be objected that the results showed only an independent contribution of the unit digit and not of 

the decade digit. Note, however, that with the regression approach, we cannot independently 

estimate the effects of units u, decades d, and the whole number (=10d+u), as these three 

variables are linearly dependent. All we can therefore conclude is that the effect of the unit digit 

is, initially at least, larger than predicted by the equation 10d+u, and this is compatible with an 

additional contribution of the mean of d and u. 

The second model assumes that the two digits are processed sequentially in a reversed order, 

first the unit digit, then the decade digit. As a result, the unit digit contributes to the quantity 

before the decade digit does. Thus, for a certain period of time the overall quantity – whether if 

holistic or decomposed – over-represents the value of unit digit compared with the decade digit. 

The third model that can account for the results is a transposition model. This model assumes 

a transient stage during which the digits are already identified but are not yet bound to their 

relative positions (Friedmann, Dotan, & Rahamim, 2010), thus creating illusory conjunctions 

(Treisman & Schmidt, 1982). During this transient stage, both the target quantity (10d+u) and 

the transposed quantity (10u+d) would be activated (e.g., presenting 28 activates both quantities 



Chapter 2. How do we convert a number to a finger trajectory? 

 38

28 and 82), either as holistic or decomposed quantities, thus enhancing the overall effect of u on 

the finger position. 

Finally, note that the unit digit effect was relatively small: in the x-coordinate regression, 

the maximal mean b[U] that was significantly larger than zero was only .039. This peak 

happened at 750 ms following target onset, and the contributions of the other predictors in that 

time point were much larger (b[N0-40] = .31, b[log'(N0-40)] = .07; the log predictor later reached 

a peak b value of .088, in 850 ms). Thus, the unit digit effect may indeed originate in 

decomposed quantity representation, but the more dominant quantity representation in this task 

is still the holistic one. The issue of decade-unit processing is examined in detail in Chapter 4. 

2.4.5. Spatial bias 

The last factor to influence finger position was a spatial-reference-point bias function (SRP), 

which was a reliable predictor of the implied endpoint from 600 ms post stimulus onset and in 

all later time points – even the endpoints were biased away from a purely linear organization 

(Fig. 2.5a), in agreement with previous studies (Barth & Paladino, 2011; Sullivan et al., 2011). 

This factor suggests that the target position in the number-to-position task is obtained using a 

non-linear estimation of the distances to three fixed reference points: the left end, middle, and 

right end of the number line. 

The SRP bias function was also a significant factor in the aim-to-arrow task, although this 

task does not involve any numbers or quantities. This finding suggests that the SRP factor 

originates – at least in part – in a spatial/motor process rather than in the quantity representation 

or in the process that creates it from the Arabic number. A comparison of the SRP factor between 

the two tasks is in line with the assumption that this factor reflects a position-estimation error: 

in the aim-to-arrow task, the estimation error is expected to be larger when the finger is far from 

the target arrow, and indeed the SRP bias factor was observed early on in the trajectory. 

Conversely, the number-to-position task never presents the target position, so the position-

estimation process continues throughout the trajectory, and correspondingly, the SRP bias was 

found late in the trajectory and even in its endpoint. 

The spatial reference point model was able to account for much of the bias from linear 

organization in the number-to-position task, and yet the results did not fit the model perfectly. 

Two major findings indicate that the spatial reference points model should be amended to fully 

account for the bias observed in the present study: the existence of a global leftward endpoint 

bias, and the negative contribution of the log predictor to the final regression model (Fig. 2.4e), 
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a finding that is not explained by any theoretical model yet. In Chapter 3, we propose a model 

that may capture this set of biases in a better way than the SRP bias function. 

2.4.6. The successive stages of converting a number to a position 

Organizing these factors along a timeline clarifies the process performed in the number-to-

position task. When the two-digit target number is presented, the participants first create a 

transient quantity representation of the unit digit (or, alternatively, a quantity representation of 

the transposed number, e.g., the quantity 52 upon seeing the target number 25). This 

representation is activated surprisingly quickly, as it affects the finger direction (implied 

endpoint) as early as 250 ms after the target number was presented. This finding is however not 

incompatible with earlier ERP studies, which indicate significant quantity effects as early as  

174 ms after target onset (Dehaene, 1996), and with the finding that digit comparison can be 

performed above chance level within 230 ms from the stimulus onset (Milosavljevic, Madsen, 

Koch, & Rangel, 2011). 

Shortly afterwards, two separate representations of the two-digit quantity are created: a 

holistic logarithmic representation and a linear representation (either holistic, or decomposed 

with the unit and decade digits contributing in almost exact 1:10 ratio). The log and linear 

representations must be active at about 300 ms, since they start affecting the finger direction 

400 ms after the target onset. The linear representation remains until the end of the trial, but the 

log representation is transient: 750 ms after the target onset, it no longer affects the implied 

endpoint. 

Finally, as their finger approaches the target line, the participants start adopting a spatial 

strategy of transforming the two-digit quantity representation into a precise location on the 

number line. This strategy, which has a measurable effect 600 ms after the target onset, relies 

on three reference points (the left end, middle, and right end of the line), and results in a bias 

that pushes the finger trajectories away from these reference points.  
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3. On the origins of logarithmic number-to-position mapping° 

Abstract. We present a detailed experimental and theoretical dissection of the processing stages that 

underlie the number-to-position task. When adults map the position of two-digit numbers on a line, 

their final mapping is essentially linear, but when monitoring the finger trajectories, the intermediate 

finger location shows a transient logarithmic mapping. Here we identify the origins of this log effect: 

small numbers are processed faster than large numbers, so the finger deviates towards the target 

position earlier for small numbers than for large numbers. When the trajectories are aligned on finger 

deviation onset, the log effect disappears. The small-number advantage and the log effect are 

enhanced in dual-task setting and are further enhanced when the delay between the two tasks is 

shortened, suggesting that these effects originate from a central stage of quantification and decision 

making. We also report cases of logarithmic mapping – by children and by a brain-injured individual – 

which cannot be explained by faster responding to small numbers. We show that these findings are 

captured by an ideal-observer model of the number-to-position mapping task, comprising 3 distinct 

stages: (1) a quantification stage, whose duration is influenced by both exact and approximate 

representations of numerical quantity; (2) a Bayesian accumulation-of-evidence stage, leading to a 

decision about the target location; and (3) a pointing stage. 

3.1. Introduction 

In Chapter 2 we saw how the process of understanding the quantities represented by two-

digit numbers can be explored using the number-to-position task, and how trajectory tracking 

can serve to gain an insight into the successive stages of this process. The main finding in 

Chapter 2 was that the finger position was correlated with the two-digit target number, but there 

was a transient time window in which the finger position was affected by an additional 

contribution of the logarithm of the target. This observation suggested that the quantities were 

encoded by two distinct systems: an exact linear representation, where all numbers are equally 

well represented, and an approximate representation where small numbers are represented more 

precisely than larger ones. This conclusion was in accord with studies that found compressive 

quantity representation in other tasks (Anobile et al., 2012; Berteletti et al., 2010; Booth & 

Siegler, 2006; Dehaene et al., 2008; Dehaene & Marques, 2002; Lourenco & Longo, 2009; 

Núñez et al., 2011; Opfer & Siegler, 2007; Siegler & Booth, 2004; Siegler & Opfer, 2003; 

Viarouge et al., 2010). Mathematically, the approximate representation can be described as a 

                                                 
° This chapter is an article published as Dotan, D., & Dehaene, S. (2016). On the origins of logarithmic number-to-
position mapping. Psychological Review, 123(6), 637–666. doi:10.1037/rev0000038. The text here is identical with 
the published article, except reformatting and removing some parts that would, if remained, repeat other sections 
of this dissertation. The chapter has supplementary material in Appendix A. 
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logarithmic number line with fixed variance, as suggested by neural recordings and brain 

imaging data (Nieder & Miller, 2003; Piazza et al., 2004). As previously noted (Dehaene, 1997), 

an equally accurate model of behavioral data can be obtained by postulating a linear number 

line with scalar variability (standard deviation proportional to number; for discussion, see 

Cicchini, Anobile, & Burr, 2014; Dehaene, 2007). As shorthand, we refer to these two 

representations simply as “approximate”, referring to the fact that they both show an increasing 

uncertainty as the numbers get larger. 

Our goal in the present chapter was to clarify the theoretical reasons why a logarithmic effect 

arises even in adults, who know perfectly well that they should point to the linear location of 

the numbers. In particular, we designed new experiments exploring the hypothesis of a dual 

representation of quantity. We reasoned that, if there are two distinct representations of number, 

respectively exact and approximate, then we might be able to interfere with one of them and 

therefore transiently enhance the influence of the other. We relied on the method introduced by 

Anobile et al. (2012), who used quantity-to-position mapping in a dual-task setting. In the 

critical condition, participants estimated a number of dots and responded by marking a position 

on a line, while simultaneously performing a secondary task of color pattern judgment. This 

manipulation made their mapping more logarithmic. This pattern could be explained as a 

psychological refractory period (PRP) effect in which the secondary task competed with the 

exact linear quantification process for central resources, while leaving approximate 

quantification intact. As a result, the log effect was facilitated while the linear representation 

was reduced. The log-linear dissociation can therefore support a model of dual quantity 

representation. We aimed to replicate these findings with two-digit symbolic numbers, using 

our continuous number-to-position paradigm. 

We also assessed a new theoretical interpretation that has recently arisen for the log effect 

in number-to-position tasks (Cicchini et al., 2014). This interpretation rests on a single quantity 

representation with differential variability – large quantities are represented with greater noise 

than small quantities. The idea is that the log effect results from a Bayesian process that 

combines this fuzzy quantity representation with prior knowledge (Fischer & Whitney, 2014; 

Jazayeri & Shadlen, 2010). Because large quantities are fuzzier than small quantities, they are 

estimated with lower confidence, and the Bayesian decision process assigns them a smaller 

weight relatively to prior knowledge. The decision is therefore slower (and the effect of prior 

biases is stronger) for larger target numbers than for smaller target numbers, and this is what 
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gives rise to the logarithmic effect. In a dual-task setting, interference from the secondary task 

reduces even further the amount of evidence that can be extracted from the quantity 

representation per unit of time, and therefore the logarithmic effect is increased.  

Note that differential variability between small and large numbers can take many forms: one 

possibility is scalar variability (linear mapping of numerical quantities, and linear relation 

between the noise level and the target number), but the model can accept almost any form of 

differential encoding of small and large numbers. Thus, a compressive scale for number (e.g., 

logarithmic) with fixed variability would lead to similar results. Furthermore, when the stimuli 

are sets of dots (as was the case in Anobile et al., 2012), differential variability may arise from 

the assumption that the noise in the subitizing range (1-3) is lower than in the non-subitizing 

range (> 4) (Cicchini et al, 2014).  

Crucially, according to this model, logarithmic mapping can be obtained even if the internal 

quantity scale is not logarithmic. Although it was initially argued that logarithmic behavior in 

the number-to-position task implies an internal logarithmic representation (Booth & Siegler, 

2006; Dehaene et al., 2008; Siegler & Booth, 2004; Siegler & Opfer, 2003, and in Chapter 2), 

Cicchini et al.'s model shows that this is not the case. In particular, as previously argued, there 

is a near-complete behavioral equivalence between the log and the scalar variability models of 

approximate number representation (Dehaene, 2007). 

Cicchini et al. (2014) further showed that the prior in the Bayesian decision process need 

not be fixed. Indeed, they discovered a new empirical finding that suggests that the prior is 

adjusted on a trial-by-trial basis: judgments are strongly affected by the quantity presented on 

the immediately previous trial. Nevertheless, whether the prior is fixed or is updated after each 

trial, what really accounts for the log effect in Bayesian decision models is differential 

variability. Accordingly, a recent study has shown a logarithmic effect in quantity-to-position 

mapping even in the first trial of an experiment, when prior trial information was not yet 

available (Kim & Opfer, 2015). 

The experiments and equations presented in Cicchini et al. (2014) capture only the 

participants’ ultimate response location in a number-to-position task, and remain silent about 

the sequence of processing stages that ultimate leads to this decision. In the present study, we 

wish to extend this model to account for the detailed within-trial dynamics of the number-to-

position task. Our goal, indeed, is to obtain a detailed theory of the successive stages leading to 

a decision in the number-to-position task. We will show that an ideal-observer theory can 
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account for our main finding that the mapping to position shows a logarithmic trend when the 

trial starts but becomes fully linear when the finger reaches the number line. The intuition behind 

this model can be specified succinctly: assuming that the decision to move is based on a 

Bayesian decision process, with a progressive accumulation of evidence arising from the target, 

then differential variability should affect the processing time of the target. Large target numbers, 

which are represented with higher variability, are quantified more slowly than small target 

numbers (hereby, “small-number advantage”), so the Bayesian prior is overridden more slowly 

for large target numbers. As a result, at each post-stimulus time point, small-target trials are in 

a more advanced stage of processing than large-target trials, which means that the finger 

trajectories for small targets are farther apart from each other than the trajectories for larger 

numbers. These differential distances between the trajectories appear as logarithmic effect when 

analyzing a specific time point. 

We term this dynamic version of Cicchini et al.’s (2014) model the differential encoding 

time model. In the final section, we present a precise mathematical model and simulations of 

this idea. Note that the differential encoding time model conforms to the two main assumptions 

of Cicchini et al. (2014): (1) The target position is determined by a Bayesian decision process, 

with a prior that is affected by previous trials; (2) The log effect results from differential 

variability for small versus large numbers, which causes differential overriding of the prior by 

the present-trial quantity. 

3.2. Experiment 3.1: Number-to-Position Mapping with Dual Task 

In Experiment 3.1, the participants mapped two-digit numbers between 0 and 40 to the 

corresponding positions on a number line. Each participant performed the task in three 

conditions, administered in three separate blocks. The first condition involved a single task: the 

participants mapped numbers to positions, with no other manipulation (like in Chapter 2). 

The second condition involved dual-tasking: subjects performed the number-to-position 

mapping parallel to a distracter task. Like Anobile et al. (2012) we used a color-detection task, 

which in our case was color naming. We hoped this task would maximize the interference effect, 

because it is not only attention demanding but also involves verbal output, which may 

selectively interfere with the linear quantity representation. One possible reason for such a 

selective interference rests on the assumption that Arabic numbers can be encoded as quantities 

by both hemispheres, but only the left hemisphere houses a verbal representation of numbers 

(Cohen & Dehaene, 2000). When the verbal system is occupied, approximate quantity may still 
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be perceived without verbal mediation (Dehaene & Cohen, 1991; Dehaene et al., 2008; 

Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999). Under this hypothesis, verbal interference 

should increase the relative weight of the non-verbal parietal circuit that encode approximate 

quantities. The dual-representation model thus predicts that the color naming condition should 

enhance the transient logarithmic effect. 

The third, control condition, was number naming: the participants said aloud the number 

while pointing to the corresponding position. This condition does not divert attention from the 

target number and, if anything, should enhance the exact linear representation. 

3.2.1. Method 

3.2.1.1. Participants 

Eighteen right-handed adults, aged 27;8 ± 6;5, with no reported learning disabilities or color 

blindness, were compensated for participation. Their mother tongue was Hebrew. For 

comparison, we also reanalyzed the data of the 21 right-handed participants reported in 

Chapter 2 – 10 Hebrew speakers, 9 French, one Italian, and one Thai, aged 35;5 ± 10;7, who 

performed the number-to-position task silently. Digital numbers in Hebrew are written like in 

English, and in our number-to-position paradigm Hebrew participants and left-to-right readers 

were found to exhibit similar patterns of results (Chapter 2). 

3.2.1.2. Procedure 

In each of the three conditions (silent, color naming, and number naming), each number  

0-40 was presented 6 times (246 trials) in random order. In the two naming conditions the 

participants were told that the two tasks (number-to-position and naming) were equally 

important but that they should first attend to the naming task and then to the number-to-position 

task. The three conditions were blocked and were administered in random order (3 participants 

per presentation order). The silent condition was as described in Section 2.2. In the naming 

conditions, while moving the finger the participants also said aloud (in Hebrew) the target 

number or a color name. One color per trial – white, yellow, orange, pink, red, blue, or green – 

was indicated by two horizontal stripes that appeared simultaneously with the target number, 

surrounding it. The oral responses were tape recorded and trials with semantic or phonological 

errors were excluded. The speech onset time was defined as the first time point in which the 

voice level, sampled at 20 Hz, exceeded a threshold level for a consecutive period of 200 ms. 
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This threshold was configured per experiment session to match environment noise and the 

participants’ speech volume. 

The training procedure was as described in Section 2.2.2, with additional training phases for 

reviewing the color names and for adapting to the speech onset limits. 

3.2.1.3. Trajectory analysis 

Trajectories were analyzed using the two-stage regression analysis described in 

Section 2.2.6. Here, the dependent variable in the regressions was the implied endpoint of the 

median trajectories (iEPmed). The predictors in the regressions were the target number (N0-40), 

log'(N0-40), the unit digit (U), and the SRP bias function (Section 2.3.2.6). The 2nd stage analysis 

compared the regression b values to zero using t-test. The reported p values are one-tailed when 

mean[b] > 0 and two-tailed when mean[b] < 0. 

3.2.1.4. ANOVA 

The speed of performing the number-to-position task varied a lot between individuals. Our 

goal in the present study was not to explain these inter-individual differences, but to focus on 

the within-subject factors that affect people's behavior in the number-to-position task. For this 

reason, in all ANOVA's in this study – most of which concern reaction times – we use repeated 

measures design and report effect sizes as partial η2, a measure that is independent of the 

between-subject variance. To maintain standardization, we also report η2 for one-way 

ANOVAs, and generalized η2 (Bakeman, 2005; Olejnik & Algina, 2003), denoted ηG
2, for 

ANOVA with several factors. In case of an ANOVA effect for which df=1 and the effect 

direction has a clear prediction, we used the corresponding t test and one-tailed p values. 
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3.2.2. Results 

3.2.2.1. General performance 

Table 3.1. General performance measures in Experiment 3.1 

Measure Silent Color naming Number naming  

Failed trials (%) 3 ± 2.4 22.1 ± 8 *** 14.4 ± 10.3 ***  

Invalid speech onset (%) a – 10.6 ± 5.3 11.2 ± 9  

Naming error (%) b – 2.6 ± 2 .04 ± .13  

Minimal velocity violation (%) 1.4 ± 2.1 7.6 ± 5.8 *** 1.8 ± 3.3  

Other errors (%) 1.6 ± 1.6 1.3 ± .9 1.4 ± 1.3  

Endpoint outliers (%) 4.6 ± 1.5 5.6 ± 1.9 + 4.7 ± 1.4  

Movement time (ms) 1102 ± 154 1398 ± 131 *** 1208 ± 132 ***  

Endpoint bias (0-40 scale) -.65 ± .45 -.68 ± .46 -.58 ± .39  

Endpoint error (0-40 scale) 1.7 ± .42 2.1 ± 0.7 *** 1.74 ± 0.4  

Speech onset time (ms) – 898 ± 101 *** c 695 ± 90  

Note. The standard deviations refer to between-subject variance of the per-subject means. 

Speech onset was compared between the two naming conditions. 
a Invalid speech onset: the verbal response was too slow, too fast, or no response was made. 
b Naming error: semantic or phonological 
c Speech onset time was compared between the color naming and number naming conditions. 

Paired t-test vs. the silent condition:  + one-tailed p < .1    ** p < .01    *** p < .001 

 

Table 3.1 shows that number-to-position mapping was more difficult in the color naming 

condition than in the silent condition: the participants were less accurate (larger endpoint error), 

slower, and had more failed trials. Thus, the color naming manipulation was clearly effective. 

The number naming manipulation had a weaker effect: a smaller difference was observed in 

movement time and failed trial rate, and accuracy was similar to the silent condition. The 

participants’ unanimous subjective impression was that color naming was considerably harder 

than the two other conditions. 
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Fig. 3.1. Median trajectories per target in Experiments 3.1 and 3.2. A median trajectory was created by 

re-sampling each trajectory into equally-spaced time points, finding the per-subject median 

coordinates per time point, and averaging these medians over participants. Median trajectories shorter 

than 2 s were extended using the endpoint. Note that in Experiment 3.2 the number sometimes 

appeared after the color (panels f-h); the bottom of each of these panels is aligned to the beginning of 

the trial (color onset), and time=0 indicates the number onset. 
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Fig. 3.2. Time course of the effects in Experiment 3.1. All panels show b values of regressions on the 

implied endpoint of the median trajectory (iEPmed). One regression was run per time point, participant, 

and condition. The b values were averaged over participants and plotted as a function of time. In this 

and all subsequent regression figures, the b values were compared to zero (t-test), and a black dot 

indicates a significant b value. (a-c) The b values per experimental condition. (d) The b values of the 

linear factor b[N0-40] in all three conditions: the effect of the linear factor arises faster in the silent 

condition than during color naming (the shaded area indicates a significant difference). (e) The b values 

of the logarithmic factor b[log’(N0-40)], showing a slightly stronger effect in color naming than in the 

silent condition. 

The participants’ median trajectories are presented in Fig. 3.1a-c. The trajectory data was 

submitted to the two-stage regression analysis described above in the Methods. All four 

predictors showed significant effects in all conditions (Fig. 3.2a-c and Table 3.2). The silent 

condition replicated the results from Chapter 2, including the approximate time window for the 

significant effect of the log regressor (500-600 ms here, 450-750 ms in Chapter 2). The only 

essential difference was that here we did not observe an early contribution of the unit digit; 
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instead, both decades and unit digits arose simultaneously as significant regressors, giving rise 

to a main effect of the linear value of the 2-digit target number (Fig. 3.2). The pattern of 

significant effects in the two naming conditions was similar to the silent condition, but in the 

color naming condition the factors were observed in later time points, in accord with the slower 

finger movement in this condition. 

 
Table 3.2. Experiment 3.1: Time windows (ms post stimulus onset) in which the regression b values 

were significantly different from zero (p ≤ .05) 

Factor Silent Color naming Number naming 

b[N0-40] > 0 450-end 200,500-end 450-end 

b[log’(N0-40)] > 0 500-600 550-700 500-600 

b[log’(N0-40)] < 0 750-end 1250-end a 850-end 

b[U] > 0 750-end b 550, 1150, 1300-end 1000-end  

b[SRP] > 0 550-end 700-end 550-end 

b[SRP] < 0 None None 150-400 

a
  p < .05 in 1250-1450, 1650-1700, and .05 < p < .07 in the other time points. 

b p < .05 in 750-800, 900-1000, 1400-1500, and .05 < p ≤ .08 in the other time points. 

3.2.2.2. Assessment of the dual representation model 

3.2.2.2.1. Color naming interferes with the linear factor and enhances the 

logarithmic factor 

The regression b values of the log and linear factors in the silent condition were compared, 

per time point, versus the color naming condition using a paired t-test (see Fig. 3.2). This 

comparison confirmed the crossover interaction between the log and linear factors: as predicted, 

the color naming manipulation enhanced the log factor and reduced the linear factor. The linear 

factor in the color naming condition was significantly smaller than in the silent condition from 

450 ms to 850 ms (b[N0-40]colors < b[N0-40]silent, t(17) > 1.75, one-tailed p < .05). The pattern was 

reversed for the log factor: a significant difference b[log’(N0-40)]colors > b[log’(N0-40)]silent was  

observed from 650 to 750 ms (t(17) > 2.1, one-tailed p ≤ .05; the difference  

b[log’(N0-40)]colors < b[log’(N0-40)]silent from 500 ms to 550 ms did not reach significance,  

t(17) < 1.4, one-tailed p > .09). This dissociation supports the predicted enhancement of the 

approximate representation, relative to the exact representation, during dual-task interference. 

This influence of color naming can be interpreted in two ways – either as facilitating the 

approximate quantity representation and weakening the linear representation, or as delaying the 
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linear representation (i.e., the difference between the silent and color curves in Fig. 3.2d can be 

viewed as either vertical or horizontal). If we accept the delay model, the delay size can be 

estimated from Fig. 3.2d as ~50 ms around movement onset (~450-500 ms post stimulus onset), 

increasing to ~200 ms when crossing the b = 1 threshold (at ~670-870 ms). Fig. 3.2e suggests 

that color naming may have slightly delayed the influence of the logarithmic factor too, but this 

delay was much smaller and never exceeded ~50 ms. The results are therefore compatible with 

the hypothesis that the linear quantity representation was delayed, which left the stage for the 

log representation to have a larger effect on the finger movement. 

Given these apparent delays, we also attempted to compute a time-independent per-

participant index of the peak log effect size. This index, denoted b[log’(N0-40)]global, was defined 

as the 75th percentile of b[log’(N0-40)] between 450 ms and 750 ms (the time window in which 

a significant log effect was found in Chapter 2; we used 75th percentile rather than the peak b 

value to increase the robustness to noise and outliers). The b[log’(N 0-40)]global was larger in color 

naming (b = 0.20 ± 0.10) than in the silent condition (b = 0.15 ± 0.11; t(17) = 2.1, one-tailed  

p = .03, Cohen's d = 0.47), confirming that the color naming manipulation enhanced the 

participants’ log effect.  

When comparing regression b values in different conditions or at different time points, a 

potential confounding factor may be that the b values are affected by the global variance among 

trajectories σ(iEP), and that this variance may differ between conditions. However, this 

explanation cannot account for the present results, because we found a larger log effect size in 

the color naming, whereas σ(iEP) in equivalent time points was smaller in this condition. To 

completely rule out the alternative interpretation, we re-ran the log effect size analysis using the 

regression β values, which are not affected by the overall implied endpoints variance3. This 

analysis too showed a larger log effect size in color naming (β[log’(N0-40)]global/silent = 0.22 ± 

0.22, β[log’(N0-40)]global/colors = 0.32 ± 0.18, t(17) = 1.83, one-tailed p = .04).  

                                                 
3 A regression analysis results in a regression formula Predicted(y) = const + Σbixi. These b values are informative 
when the predictors xi and the dependent variable y are specified using a meaningful scale, as is the case in the 
present study. However, the bi values are sensitive to the scale in which xi and y are specified, and consequently 
they are typically not comparable with each other or across datasets. This comparability issue can be solved by 
standardizing the predictors and the dependent variable using linear transformation into a common scale with  
mean = 0 and σ = 1. Denoting the transformed variables xi’ and y’, the regression formula would now be 
Predicted(y’) = Σβixi’, where βi = bi * σ(xi) / σ(y). Unlike b values, the β values are comparable with each other 
because all xi’ are specified using the same scale. More importantly for the present issue, even β values from 
different regressions are comparable, because the dependent variables too are specified using a fixed scale. 
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3.2.2.2.2. Control condition: Number naming 

The number naming results were very similar to the silent condition (Fig. 3.2). The linear 

factor b[N0-40] was slightly smaller in number naming than in the silent condition, but this 

difference was significant only in two time points (650 ms and 750 ms, t(17) > 2.47, two-tailed 

p ≤ .03; in all other time points, t(17) < 1.77, p > .09). The log factor did not show a clear trend: 

b[log’(N0-40)] was stronger in the silent condition than in number naming at some time points 

and weaker at other time points, with a significant effect only in two time points (350 ms and 

750 ms, t(17) > 1.88, p < .04). The global log effect size was similar in number naming 

(b[log’(N0-40)]global = 0.12 ± 0.13) and in the silent condition (b[log’(N0-40)]global = 0.15 ± 0.11; 

t(17) = 1.12, two-tailed p = .25). Thus, number naming, unlike color naming, did not facilitate 

the log factor. Analyzing the results in terms of delay shows that number naming caused only a 

small delay of ~ 10-20 ms in the linear factor and no delay in the log factor.  

3.2.2.3. Dependency on prior trials 

To assess the possibility that the participants’ performance was affected by perseverations 

from previous trials, as described in Cicchini et al. (2014), the trajectory data was submitted to 

regression analysis with the four predictors described above (N0-40, log’(N0-40), U, and SRP), to 

which we added the values of the target numbers in each of the last 15 trials (predictors denoted 

N-1, N-2, … N-15). The regression was run on the raw, unaveraged trials and the dependent 

variable was iEP. One regression was run per condition and participant in 50 ms intervals. Per 

predictor, condition, and time point, the participants' b values were compared to zero using  

t-test (Fig. 3.3a-c). These regressions showed a significant effect of the last 2 or 3 trials, which 

decreased around 500 ms as the finger began to point to the target quantity of the current trial. 

To examine the relative effect of perseveration from each of the previous trials, we 

calculated the mean b value of each of the predictors N-1 to N-10 over the time range 0-600 ms. 

This was done for the three conditions in Experiment 3.1 and for the data from Chapter 2. We 

observed an exponentially decreasing contribution of previous targets (Fig. 3.3d). This pattern 

is consistent with the notion of a Bayesian process (Cicchini et al., 2014), according to which 

the finger is initially guided by an expectation or “prior” based on past trials, which gets 

constantly updated as the new target gradually overrides the expectation generated from older 

trials. The prior appears to decay roughly exponentially across trials N-1, N-2, N-3 etc., and in 

this respect, the phenomenon bears similarity to perseverations observed in many brain-lesioned 

patients (Cohen & Dehaene, 1998). 
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Fig. 3.3. Influence of the prior targets on current finger trajectory in Experiment 3.1. (a-c) Influence of 

the current target N and the past 5 targets (N-1 to N-5) on the implied endpoint, as measured by 

regression (same type of plot as in Fig. 3.2). (d) Mean b value over 0-600 ms, for each of the past 10 

targets (N-1 to N-10), showing an exponentially decreasing influence of prior targets. 

3.2.2.4. Assessment of the differential encoding time model 

The differential encoding time model stipulates that the log pattern occurs because the finger 

deviates towards the desired location at an earlier time point for smaller target numbers (small-

number advantage). As a result, in several post-stimulus-onset time points, trials with small 

target numbers are in a more advanced stage of processing (and finger movement) than trials 

with large targets, so the trajectories of small-target trials are farther apart from each other, 

giving rise to a log effect in the regression. 

3.2.2.4.1. Identifying the onset of horizontal movement 

To assess the differential encoding time model, we first calculated the onset time of the 

finger’s horizontal movement on each trial. To determine the horizontal movement onset per 

trial, we used an algorithm that aimed to identify the time point where the finger horizontal 

velocity started building up. A typical horizontal velocity profile of a trial consists of one or 

more velocity peaks (which may reflect several successive movement plans), but as every 

experimental measure it is also affected by jitter and random movements. Our goal was to find 

the onset of the earliest non-random velocity peak. To identify non-random peaks, we first 
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estimated the participant’s individual level of “motor noise” based on the distribution of 

horizontal velocities during the time window 0-250 ms (assuming that before 250 ms, movement 

is not yet affected by the target number; see Appendix A for a justification of this assumption). 

We considered only velocity peaks that were significantly higher than this motor noise, and 

found the onset of the earliest of these peaks – as long as the onset occurred after 250 ms. 

The specific algorithm was as follows. To calculate the horizontal velocity along each 

trajectory, we first applied Gaussian smoothing with σ = 20 ms to the finger x coordinates, and 

then computed the derivative of the smoothed coordinates. To determine the horizontal 

movement onset per trial, we first looked for a significant peak of the x velocity profile – the 

highest x velocity that exceeded the top 1 percentile of the participant’s velocity distribution on 

the first 250 ms of all trials. The onset time of this peak x velocity was defined as the latest time 

point where the x velocity remained lower than 5% of the peak velocity (if velocity never got 

below this threshold from 250 ms onwards, no onset was found and the peak was ignored). To 

detect cases in which there was evidence for several successive movements (several velocity 

peaks), we checked if there was, earlier to the detected movement onset, another significant 

velocity peak, and reapplied the algorithm to detect this peak’s onset. This procedure was 

applied recursively until no further velocity peak was detected. Visual inspection indicated that, 

for the vast majority of the trials, the algorithm was in excellent agreement with our subjective 

perception of the movement onset. 

The algorithm failed to find the movement onset when the peak velocity was too low to 

reach significance, or when the above 5% criterion was never met in the time window from 250 

ms post onset until 100 ms before the finger reached the number line. Such failures amounted 

to 19%, 18.3%, and 13.6% of the trials in the silent condition, number naming, and color 

naming, respectively. The horizontal movement onset time of these trials was coded manually 

whenever possible (the encoder was blind to the target number and saw only if it was smaller or 

larger than 20). After manual encoding, onset information was available for 97.9% of the trials. 

In the Chapter 2 data, the algorithm failed to find the onset of 11.4% of the trials, and after 

manual encoding the onset information was available for 99.2% of the trials.  

Fig. 3.4a shows the mean horizontal movement onset times per target number and 

experimental condition. In the analyses of horizontal movement onsets (detailed below), we 

excluded trials with target number between 15 and 25, in which the target was close to the center 
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of the screen and the horizontal movement was too small for reliable onset detection. We also 

excluded trials with endpoint outliers (as explained in Section 2.2.5). 

 
Fig. 3.4. The mean onset time of horizontal movements, averaged over all participants, as a function of 

target number. (a) Onset time per condition in Experiment 3.1 and in Chapter 2. (b) Onset time per SOA 

in Experiment 3.2 (t=0 is the target number onset time). Targets = 15-25 are plotted here but were 

excluded from all analyses. 

3.2.2.4.2. The factors affecting the horizontal movement onset 

The differential encoding time model predicts that the onset times should be earlier for 

smaller numbers (the small-number advantage effect), and that color naming should enhance 

the small-number advantage. To examine this assumption, the onset times were submitted to 

three-way repeated measures ANOVA with the subject as the random factor and with 3 within-

subject factors: the experimental condition, the target side (< 20, left; or > 20, right), and a 

numeric factor given by the absolute distance between the target number and 20. Two separate 

ANOVA’s were run: one compared color naming with the silent condition, and another 

compared number naming with the silent condition. 

3.2.2.4.2.1. Color naming versus the silent condition 

A significant main effect of condition (F(1,17) = 114.1, p < .001, ηp
2 = .87, ηG

2 = .38) 

reflected the dual-task interference: movement onset in color naming was delayed by 111 ms 

relative to the silent condition.  

A significant main effect of side (t(17) = 3.99, one-tailed p < .001, ηp
2 = .48, ηG

2 = .11) 

confirmed the small-number advantage: movement onset was earlier for small numbers than for 

large numbers (mean delay = 49 ms), as predicted by the differential encoding time model. The 

differential encoding time model also predicts that color naming would facilitate the small-

number advantage, and this was indeed the case: the small-number advantage in color naming 

(62 ms) was larger than in the silent condition (36 ms), and the Condition x Side interaction was 
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significant (t(17) = 1.99, one-tailed p = .03, ηp
2 = .19, ηG

2 = .008). Thus, the predictions of the 

differential encoding time model were fully confirmed. 

A significant main effect of distance (F(1,17) = 97.4, p < .001, ηp
2 = .85, ηG

2 = .15) showed 

that movement onset was earlier as the target number became closer to either end of the number 

line – a pattern clearly observable in Fig. 3.4a. To analyze the interactions with the distance 

factor, we first examined their direction by calculating the distance effect in the various 

conditions. The movement onset time was submitted to regression analysis with distance = 

|target-20| as a single predictor – one regression per participant, condition, and side. The distance 

effect in color naming (average b[distance] = -9.92 ms) was stronger than in the silent condition  

(b[distance] = -7.24 ms). The three-way ANOVA showed that this difference was significant 

(Distance x Condition interaction: t(17) = 2.68, one-tailed p = .01, ηp
2 = .0.3, ηG

2 = .0.01). The 

distance effect was also marginally stronger for numbers < 20 (b[distance] = -9.49 ms) than for 

numbers > 20 (b[distance] = -7.67 ms; Distance x Side interaction: t(17) = 1.43, one-tailed  

p = .08, ηp
2 = .11, ηG

2 = .001). This Distance x Side interaction is predictable by both logarithmic 

and scalar variability models, which attribute the distance effect to the target quantity: such 

models predict a stronger distance effect when the ratios between the quantities are larger, as is 

the case for targets < 20 compared with targets > 20. The three-way Condition x Side x Distance 

interaction was not significant (F(1,17) < 0.01, p = .98). 

3.2.2.4.2.2. Number naming versus the silent condition 

A significant main effect of condition (F(1,17) = 12.43, p = .003, ηp
2 = .42, ηG

2 = .02) 

reflected a dual-task interference, although smaller than in color naming: movement onset in 

number naming was delayed by 18 ms relative to the silent condition. 

A significant small-number advantage was observed (41 ms, main effect of side:  

t(17) = 3.14, one-tailed p = .005, ηp
2 = .37, ηG

2 = .10). The small-number advantage did not 

differ significantly between number naming (45 ms) and the silent condition (36 ms;  

Condition x Side interaction: F(1,17) = 0.53, p = .48). 

The main effect of distance was significant (F(1,17) = 81.7, p < .001, ηp
2 = .83, ηG

2 = .13) 

and this effect too did not interact with condition (F(1,17) = 0.45, p = .51). The direction of the 

Distance x Side interaction was examined using the same method we described above to analyze 

the color naming condition. This analysis showed that as predicted, the distance effect for 

numbers < 20 (b[distance] = -9.0 ms) was marginally larger than the distance effect for  

numbers > 20 (b[distance] = -7.24 ms, Distance x Side interaction: t(17) = 1.64, one-tailed  
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p = .06, ηp
2 = .14, ηG

2 = .004). The three-way Condition x Side x Distance interaction was not 

significant (F(1,17) = 0.28, p = .60). 

3.2.2.4.3. Differential encoding times as the reason for the log effect 

The differential encoding time model attributes the transient log effect (Fig. 3.2) to earlier 

horizontal movement onset times in small-target trajectories than in large-target trajectories. If 

these differences in movement onset times were eliminated, the model predicts that the transient 

log effect would disappear. To eliminate onset time differences, we aligned each trial’s 

trajectory data to its horizontal movement onset time. The aligned trajectories (excluding trials 

with no movement onset information) were submitted to regression analysis similar to the one 

described in the “Assessment of the dual representation model” section above, with iEP as the 

dependent variable and with four predictors: N0-40, log’[N0-40], the unit digit U, and SRP. One 

regression was run per condition, participant, and post-horizontal-movement-onset time point 

in 50 ms intervals. Per predictor, condition, and time point, the participants' b values were 

compared with zero using t-test. A significant positive contribution of b[N0-40] was found in all 

conditions and in all time points (Fig. 3.5). b[N0-40] was significant even at the time of horizontal 

movement onset (t=0), and within 50 ms it reached a considerable effect in all conditions (over 

participants, mean b > 0.38). This indicates that when the finger horizontal movement started, 

the participants already had a linear quantity representation of the 2-digit number. Crucially, the 

log factor b[log’(N0-40)] no longer showed any significant positive effect in any experimental 

condition, excluding a short time window (150-250 ms) in the Chapter 2 data, in which there 

was a minor log effect (b[log’(N0-40)] ≤ 0.05; Fig. 3.5d). Thus, controlling for the movement 

onset time eliminated the log effect, as predicted by the differential encoding time model.  

The elimination of the log effect cannot be attributed to the fact that the aligned regression 

was run only on a subset of the trials (those for which we could identify the movement onset): 

when the same regression was run on the same subset of trials without aligning trajectories by 

their onset time, the log factor b[log’(N0-40)] was significantly larger than zero in each of the 3 

conditions during at least 250 ms, with peak b[log’(N0-40)] ≥ 0.11 (average over participants).  

These findings indicate that the transient log effect in this task, both in the silent single-task 

condition and in the dual-task conditions, can be fully explained by differential horizontal 

movement onsets per target. 
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Fig. 3.5. Time course of the effects in Experiment 3.1 after alignment on horizontal movement onset 

time. The figure shows the regression b values (dependent variable: iEP) per condition and time point 

in Experiment 3.1 and, for comparison purposes, in Chapter 2, averaged over participants. The x axis 

indicates the time after the initiation of horizontal movement. 

3.2.3. Discussion of Experiment 3.1 

The silent condition in Experiment 3.1 replicated the results of Chapter 2: the analysis of 

trajectories showed a strong linear effect and a transient logarithmic effect. The color naming 

condition confirmed the prediction that dual-tasking makes the number-to-position mapping 

more logarithmic: the regression analysis showed a decreased (or delayed) linear factor and an 

enhanced log factor. This is similar to the results previously found when the quantities were 

presented non-symbolically (Anobile et al., 2012). 

The log-linear dissociation was initially taken (in Chapter 2) as direct evidence for separate 

log and linear quantity representations, with the linear representation being more sensitive to 

interference from the dual task – presumably due to competition of resources between the color 

naming task and linear quantity encoding mechanisms. However, the analysis of movement 

onsets suggests a simpler explanation: the decision to start moving the finger is earlier for 

smaller target numbers, thus the trajectories fan out more quickly for smaller number than for 

larger numbers, and this induces a transient log effect in the regressions. The dual task (color 

naming) further enhances this differential delay in movement onset as a function of target size, 
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and consequently increases the log effect. Thus, the differential movement time model fully 

accounts not only for the dissociation between the silent and color naming conditions, but also 

for the log effect in each of the conditions. Indeed, when the horizontal movement onset time 

was controlled for (by aligning each trial to its movement onset time), the log effect was 

eliminated, and with it the difference between the conditions. 

Our findings are consistent with the idea that, early in the trial, before the participants obtain 

evidence from the target, they move their finger in accordance to prior knowledge. In our task, 

participants are asked to initially point towards the midpoint of the line, which happens to be 

the optimal prior given the flat distribution of target numbers. Furthermore, their pointing is also 

influenced in part by the distribution of previous targets: when the previous targets are large, 

the finger is slightly displaced towards the right side, and vice-versa. This effect is essentially a 

replication of Cicchini et al.’s (2014) finding of a prior-trial effect, although in our case the 

effect (1) showed an exponentially decreasing influence of several recent targets, and  

(2) influenced only the initial part of the next trial’s finger trajectory, not the final endpoint. 

The aligned-by-movement-onset analysis also showed that the unit and decade digits 

affected finger movement in an almost accurate 1:10 ratio throughout the trial, indicating that 

the decade and unit quantities were assigned very accurate relative weights. This finding is 

interesting because it suggests parallel rather than sequential processing of the two digits: if one 

of the digits was processed before the other, its effect on movement should have been larger 

than implied by the 1:10 ratio. The absence of such deviation from the 1:10 ratio suggests either 

that the decade and unit quantities were processed in parallel, or that the decision to initiate 

finger movement was delayed until a complete two-digit quantity was constructed. 

Last, the analysis of movement onsets revealed a strong distance effect that was not 

predicted by any of the models: the movement onset was much earlier for targets close to the 

ends of the number line and delayed for targets near the middle (Fig. 3.4). The origins of this 

effect are discussed in Experiment 3.5.  

Methodologically, these results indicate that data from the number-to-position paradigm 

should be analyzed with caution. Regression analyses of stimulus-aligned finger trajectories, as 

performed in Chapter 2, show log and linear patterns at different times, yet this does not 

necessarily reflect directly the underlying internal representations. Rather, movement-aligned 

analysis suggests that this pattern may reflect the differential durations of a pre-movement stage 

of intention buildup. 
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An alternative interpretation of the small-number advantage is in terms of a motor rather 

than a numeric effect. According to this interpretation, the faster deviation to small numbers 

would not result from their magnitude but from their location on the left side on the number 

line. Purely motoric reasons, including for instance the types of muscle activity required to push 

the finger left or right, may make leftward movements faster than rightward movements. We 

refuted this hypothesis, however, with two control experiments, which are reported fully 

in Appendix A. In one experiment, the silent condition of Experiment 3.1 was replicated with a 

group of left-handed participants. The task required these participants for the cognitive operation 

as in Experiment 3.1, but for a reversed muscle operation. The motor hypothesis therefore 

predicts that the left-handed participants would deviate more quickly towards the right side 

(large numbers), i.e., a large-number advantage. However, the findings were exactly the 

opposite: the left-handed participants showed a small-number advantage just like the right-

handed group. In a second control experiment, a group of right-handed participants pointed to 

the same 41 locations as in the number-to-position task, but the target location was now 

indicated explicitly and non-numerically by an arrow placed at the target location. Thus, the set 

of required responses in this task was as in Experiment 3.1, but the decision process did not 

involve numbers. The findings showed that the participants in fact deviated slightly faster to the 

right than to the left, i.e. the opposite of the bias we observed in the numerical experiments. 

Taken together, these control experiments clearly refute the motor hypothesis and support our 

interpretation of the small-number advantage as a numerical effect. 

3.3. Experiment 3.2: Manipulating the Color-Number SOA 
Experiment 3.2 was designed to replicate the dual-task interference effect observed in 

Experiment 3.1 within the better-controlled setting of a psychological refractory period design 

(Pashler, 1984, 1994). In Experiment 3.1, the three conditions were very different from each 

other: one condition was a single task, and the two other conditions were dual-tasks involving 

naming of words from different categories (numbers and colors), which could trigger different 

cognitive processes (Bachoud-Lévi & Dupoux, 2003; Bormann, Seyboth, Umarovaa, & 

Weillera, in press; Cohen, Verstichel, & Dehaene, 1997; Dotan & Friedmann, 2015; Marangolo, 

Nasti, & Zorzi, 2004; Marangolo, Piras, & Fias, 2005). Experiment 3.2 therefore used the classic 

PRP manipulation of SOA between two fixed tasks. Only the color naming task was used, but 

the SOA between the onset of the color and the target number was manipulated. We assumed 

that decreasing the SOA would increase the temporal overlap between the central decision 
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stages of the two tasks, thus imposing a decision bottleneck (Sigman & Dehaene, 2005). Thus, 

the effect of shortening the SOA would be similar to adding the dual-task in the first place. 

Consequently, we predicted an increased log effect for shorter SOAs, which according to the 

differential encoding time model should be entirely reducible to a differential delay of 

movement onset for different numerical targets. 

3.3.1. Method 

Twenty right-handed adults (age 26;2 ± 4;0) with no reported cognitive deficits or color 

blindness were compensated for participation. Their mother tongue was Hebrew.  

One experimental block was a replication of the color naming condition in Experiment 3.1. 

In 3 other blocks the color stripes still appeared when the finger started moving, but the onset 

of the target number was delayed by 100 ms, 200 ms, or 300 ms. Each participant performed all 

blocks and was randomly assigned to one of four block presentation orders (0-100-200-300, 

100-0-300-200, 300-200-100-0, or 200-300-0-100). Each number between 0 and 40 was 

presented twice per block (82 trials). The participants also performed silent number-to-position 

mapping (identical with the silent condition in Experiment 3.1) as a fifth block, which was 

administered last and presented each number 4 times (for 5 participants) or 6 times (for the other 

participants). 

The horizontal movement onset time was calculated per trial using the method described 

above (Section 3.2.2.4.1), excluding trials with target numbers 15-25. The automatic algorithm 

succeeded finding the onset of 90.8% of the trials (88.9%, 89.9%, 91.6%, and 92.6% per SOA 

condition) and 84.5% of the trials in the silent control condition. For the remaining trials, 

horizontal movement onset was encoded manually, after which 98.7% of the trials (and 98.6% 

of the control trials) had movement onset information. The other trials were excluded from the 

onset-related analyses. The onset analyses described below were also run while excluding the 

trials with manual onset encoding, and the results were essentially the same. 

3.3.2. Results 

3.3.2.1. Comparison of the conditions using trial-level measures 

Table 3.3 shows the basic performance measures in this experiment. Each of these measures 

was compared across the four SOA conditions using repeated measures ANOVA with the per-

subject mean as the dependent variable. There were no significant differences between the 

SOA’s in endpoint bias (F(3,57) = 1.67, p = .18) and endpoint error (F(3,57) = 1.66, p = .19), 
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but there were differences in movement time (F(3,57) = 3.65, p = .02, ηp
2 = .16, η2 = .03) and 

failed trial rate (F(3,57) = 3.98, p = .01, ηp
2 = .17, η2 = .06). The results were essentially the 

same when the ANOVA was run with the SOA as a numeric factor. 

Table 3.3. General performance measures in Experiment 3.2. 

Measure Silent 0 ms 100 ms 200 ms 300 ms 

Failed trials (%) 2.6 ± 2.0 19.6 ± 10.2 21.4 ± 10.7 16.5 ± 10.8 14.4 ± 12.3 

Movement time (ms) a 1180 ± 162 1414 ± 152 1410 ± 143 1428 ± 129 1476 ± 155 

Endpoint bias (0-40 scale) -.66 ± .46 -.67 ± .72 -.57 ± .56 -.61 ± .67 -.78 ± .92 

Endpoint error (0-40 scale) 1.7 ± .43 2.49 ± 1.1 2.41 ± .82 2.27 ± .98 2.43 ± 1.16 

Speech onset time (ms) a – 878 ± 106 871 ± 140 811 ± 138 802 ± 153 

Horizontal movement 

onset time (ms) b 
496 ± 42 597 ± 86 525 ± 83 467 ± 75 420 ± 75 

Note. Standard deviations refer to between-subject variance of the per-subject means. 
a The movement time and the speech onset time are indicated with respect to the color onset time.  
b The horizontal movement onset time is indicated with respect to the number onset time. 

We continued with a classical PRP analysis, which consists in examining how the reaction 

times in the two tasks were affected by the SOA manipulation. The two RT measures are the 

speech onset time for the naming task and the movement onset time for the pointing task. 

The speech onset times of color naming were significantly different between the SOA 

conditions (one-way repeated measures ANOVA, F(3,57) = 10.9, p < .001, ηp
2 = .36, η2 = .06). 

They were longer in SOA=100 than in SOA=200 (paired t(19) = 4.0, one-tailed p < .001, 

Cohen's d = 0.10), but were similar between SOA’s 0-100 and 200-300 (paired t(19) < 0.54, 

one-tailed p > .6).  

The horizontal movement onset time too was significantly different between the SOA 

conditions (one-way repeated measures ANOVA, F(3,57) = 91.93, p < .001, ηp
2 = .83, η2 = .42; 

for all pairs of adjacent SOAs, paired t(19) ≥ 3.0, p < .001, Cohen's d > 1.1). Table 3.3 shows 

that each increase of the SOA by 100 ms decreased the horizontal movement onset time by ~50-

70 ms. Note, however, that this added delay is significantly smaller than the 100-ms spacing of 

the SOA conditions (when comparing onset times after adding 100 ms to the earlier SOA, paired 

t(19) > 2.56, p < .02, Cohen's d > 0.57 for all adjacent SOAs). In many PRP experiments, a 1:1 

relation between SOA shortening and secondary-task delay is obtained (Pashler, 1984, 1994; 

Sigman & Dehaene, 2005). The fact that it was not obtained here suggests that interference was 

not complete and that there was partial resource sharing (Tombu & Jolicoeur, 2002) or inter-
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trial variability in the prioritizing of the two tasks, as also confirmed by the above finding that 

color naming too was significantly delayed by shortening the SOAs. 

3.3.2.2. Regression analysis of the trajectories 

The trajectory data was submitted to regression analysis with iEP as the dependent variable 

and with the predictors introduced in Experiment 3.1: N0-40, log’(N0-40), the unit digit U, the 

spatial-reference-points-based bias function SRP, and the target number of the previous trial  

N-1. One regression was run per SOA (and for the silent condition), participant, and time point, 

in 50 ms intervals. The per-subject regression b values of each SOA, time point, and predictor 

were compared versus zero using t-test. The pattern of factors we observed in Experiment 3.1 

was replicated for all four SOA’s (Fig. 3.6a-d): dominant linear factor, transient logarithmic 

factor, SRP contribution in the late trajectory parts, and an effect of the previous trial in early 

trajectory parts. 

We then examined the effect of SOA on the linear factor (Fig. 3.6e). The per-subject  

b[N0-40] values were first compared using a repeated measures ANOVA with a factor of SOA 

(one ANOVA per time point, starting from 150 ms). A significant difference between SOA’s 

was found from 550 ms to 900 ms (F(3,57) > 4.48, p < .01, .19 < ηp
2 < .34, .03 < η2 < .11).  

A comparison of b[N0-40] between each pair of adjacent SOA’s using paired t-test showed that 

for SOA’s from 0 to 200 ms, the difference was in the predicted direction, i.e., decreasing the 

SOA resulted in a reduced linear factor: we found a significant difference b[N0-40]/SOA=100 >  

b[N0-40]/SOA=0 from 700 ms to 900 ms (t(19) > 1.89, one-tailed p < .04, 0.42 < Cohen's d < 0.56), 

and b[N0-40]/SOA=200 > b[N0-40]/SOA=100 from 550 ms to 750 ms (t(19) > 1.82, one-tailed p < .05, 

0.41 < Cohen's d < 0.74). There was no significant difference between SOA’s 200 ms and 300 

ms at any time point (t(19) < 0.84, one-tailed p ≥ .21); in fact, as Fig. 3.6e clearly shows, the 

linear factor was almost identical for these two SOA values. Thus, as predicted, decreasing the 

SOA (and thereby extending the time overlap between the two tasks) caused an increasing 

interference with the linear factor of the number-to-position task, which can be interpreted as a 

delayed onset of this factor. The shape of this effect, with an absence of a difference between 

the longer SOAs (200 and 300 ms), is classical for the PRP effect (Pashler, 1984, 1994; Sigman 

& Dehaene, 2005). It suggests that the central competition between the two tasks lasted no more 

than 200 ms, and therefore reached a floor level for SOA of 200 ms and beyond. 

The effect of SOA on the log factor was examined in a similar manner (Fig. 3.6f). No 

significant SOA effect on b[log’(N0-40)] was found in any time point: a per-time-point repeated 
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measures ANOVA, starting from 150 ms, with SOA as a within-subject factor and the subject 

as the random factor, showed no significant difference (F(3,57) < 2.15, p > .10). Thus, whereas 

in Experiment 3.1 we observed significant effects on both the log and linear factors but in 

opposite directions, in Experiment 3.2 shortening the SOA reduced the linear factor while 

keeping the log factor almost unchanged. 

 
Fig. 3.6. Time course of the effects in Experiment 3.2. Note that the different experimental conditions 

are horizontally aligned to the target number onset, not the color onset. (a-d) Regression factors per 

SOA. (e) The linear factor b[N0-40] per SOA. Grey areas show a time window of 200 ms during which  

b[N0-40]/SOA=100 < b[N0-40]/SOA=200. A similar difference b[N0-40]/SOA=0 < b[N0-40]/SOA=100 was found in a slightly 

later time point, 700 ms to 900 ms. (f) The log factor b[log’(N0-40)] showed no significant differences 

among SOA’s. 
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The interaction between the log and linear factor was evaluated using two-way repeated 

measures ANOVA with the regression b values as the dependent variable, between-subject 

factors of regression predictor (log, linear) and SOA, and the subject as the random factor. One 

ANOVA was run per time point, starting from 150 ms. A significant interaction was found from 

600 ms to 850 ms (F(3,57) > 3.16, p ≤ .03, except p = .06 in time point 650 ms; .12 < ηp
2 < .16, 

.02 < η2 < .06), confirming that the SOA manipulation affected the linear and log factor 

differently. 

 
Fig. 3.7. The prior-target factor b[N-1] in Experiment 3.2, with the SOA conditions aligned by the 

number onset (a) or by the color onset (b). The prior effect is initially independent of the number onset 

time, but its decay is linked to the number onset. 

We assumed that the effect of prior from the previous trial would initially be independent of 

the new number presented, and consequently independent of SOA. Indeed, when aligning the 

SOA conditions to the beginning of the trial, i.e., to the color onset rather than to the number 

onset (Fig. 3.7b), no significant differences in b[N-1] were found between SOA’s until 550 ms 

(repeated measures ANOVA per time point, with b[N-1] as the dependent variable, SOA as a 

within-subject factor, and the subject as the random factor: F(3,57) < 1.63, p > .19). In later time 

points, from 600 ms to 900 ms (the downhill part of the b[N-1] curve), a significant difference 

was found between the SOA conditions (from 600 ms to 900 ms, F(3,57) > 3.15, p ≤ .03,  

.14 < ηp
2 < .42, .06 < η2 < .18; between 650 ms and 850 ms, F(3,57) > 5.51, p ≤ .002). This late 

between-SOA difference almost disappeared when the conditions were aligned to the number 

onset rather than to the color onset (Fig. 3.7a; from 400 ms to 1000 ms, F(3,57) > 2.44, p > .07, 

except two time points, 650-700 ms, in which p = .05). Thus, the initial effect of b[N-1] was 

triggered by the color onset, whereas its decay was linked to the number onset. These findings 

suggest that finger movement is initially affected by the prior from previous trial/s, and this 

effect decays as the prior is overridden by the new number presented. 
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3.3.2.3. Differential encoding times as the reason for the log effect 

The differential encoding time model assumes that the log effect occurs because the 

horizontal movement onset time is different for different target numbers. Once these onset 

differences are eliminated by aligning trajectories to their movement onset, the regression 

analysis should show no logarithmic effect. To examine this prediction, the trajectory data was 

submitted to regression analysis after aligning each trajectory to the trial’s horizontal movement 

onset time. The dependent variable was iEP and the predictors were N0-40, log’(N0-40), the unit 

digit U, and SRP. One regression was run per SOA, participant, and time point in 50 ms 

intervals. Per predictor, SOA, and time point, the participants' b values were compared with zero 

using t-test (Fig. 3.8). The linear factor b[N0-40] in these regressions showed a virtually identical 

pattern for all SOA’s (Fig. 3.8a). A per-time point repeated measures ANOVA, with SOA as a 

single within-subject factor and the subject as a random factor, showed no difference in  

b[N0-40] between SOA's at any time point from 50 ms (F(3,57) < 2.21, p > .09), and only a minor 

difference at t = 0 (F(3,57) = 3.7, p = .02, ηp
2 = .16, η2 = .12; the b values per SOA at t=0 were 

0.04, 0, -0.02 and -0.02). The log factor too showed no significant difference between SOA 

conditions (a per-time point repeated measures ANOVA, with SOA as a single within-subject 

factor and the subject as a random factor, F(3,57) < 1.31, p > .28). In fact, the log factor showed 

no significant positive contribution in any of the conditions (Fig. 3.8b). Thus, as in 

Experiment 3.1, the differences in horizontal movement onset times fully accounted for the log 

effect as well as for the differences between the four SOA conditions, including the log-linear 

dissociation.  

 
Fig. 3.8. Time course of the effects in Experiment 3.2 after alignment on horizontal movement onset 

time. Here, b[N0-40] and b[log’(N0-40)] no longer show any difference between the conditions. 
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3.3.2.4. Factors affecting horizontal movement onset 

We next examined how the target number and SOA affect the horizontal movement onset 

times (Fig. 3.4b). Similarly to Experiment 3.1, the onset times, specified as the time since the 

target number appeared on screen, were analyzed using repeated measures ANOVA with the 

subject as the random factor and with 3 within-subject factors: the target side (< 20, left;  

or > 20, right) and two numeric factors – the SOA and the absolute distance between the target 

number and 20. To minimize noise, as well as to resolve the problem of missing data in 13 

participant-SOA-target combinations, the distance factor grouped each set of 3 adjacent target 

numbers, resulting in 5 levels of this factor: 6-8, 9-11, 12-14, 15-17, and 18-20. 

A main effect of SOA (F(1,19) = 80.53, p < .001, ηp
2 = .81, ηG

2 = .24) mirrored the SOA 

effect that was earlier observed in the trial-level PRP analysis: decreasing the SOA created some 

delay in the movement onset, indicating that the dual task interference was not complete and 

that there was partial resource sharing with the naming task. 

A main effect of side (F(1,19) = 17.15, p < .001, ηp
2 = .50, ηG

2 = .14) reaffirmed the small-

number advantage: as predicted by the differential encoding time model, onset times were 

earlier for small target numbers (< 15) than for large target numbers (> 25). We then examined 

whether the small-number advantage interacted with SOA. The small-number advantage was 

calculated per SOA as the delta between mean movement onsets on the left and right sides. The 

differential encoding time model predicts an increasing small-number advantage for smaller 

SOAs (i.e., for larger overlap between the two tasks). Indeed, averaged over participants, the 

small-number advantage was 79 ms, 85 ms, 65 ms, and 54 ms for SOA = 0, 100, 200, 300 

respectively, and the three-way ANOVA showed that this difference between SOA conditions 

was significant (Side x SOA interaction: t(19) = 1.74, one-tailed p = .05, ηp
2 = .16, ηG

2 = .004). 

A significant main effect of distance-from-20 (F(1,19) = 22.86, p < .001, ηp
2 = .58,  

ηG
2 = .06) showed that movement onset was delayed for target numbers closer to the middle of 

the number line. To examine whether this distance effect was sensitive to the SOA manipulation, 

we calculated the distance effect per participant and SOA as the slope of the onset-per-target 

function. This was done using regression analysis with the movement onset time as the 

dependent variables and with two predictors: the target number side (-1 or 1) and its absolute 

distance from 20. The resulting b[distance] from this regression reflects the distance effect; its 

values for SOA’s 0, 100, 200, and 300 were -10.1 ms, -6.6 ms, -5.4 ms, and -4.1 ms, respectively 

(average over participants), namely, decreasing the SOA continuously increased the distance 
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effect. The three-way ANOVA showed that this effect of SOA on the distance effect was 

significant (Distance x SOA interaction: F(1,19) = 16.48, p < .001, ηp
2 = .48, ηG

2 = .01).  

There was no significant Distance x Side interaction (F(1,19) = 0.51, p = .48) and no three-

way interaction (SOA x Side x Distance, F(1,19) = 0.13, p = .73). 

3.3.3. Discussion of Experiment 3.2 

Experiment 3.2 used the color naming dual task and manipulated the color-number SOA. 

The analysis of trajectories replicated the dissociation between the log and linear factors that 

was observed in Experiment 3.1: decreasing the SOA decreased (or delayed) the linear factor in 

the participants’ mapping to positions (implied endpoints), while leaving the log factor almost 

unchanged. In this respect, the effect of shortening the color-number SOA, a manipulation that 

presumably makes the experiment harder, was similar to the effect of adding the distracter task 

in the first place. 

The dual representation model can explain these findings as a selective interference of the 

color naming task with the exact-linear quantity representation, but not with the approximate 

representation. However, again the differential encoding time model offers a simpler account of 

the findings. Inter-trial differences in the horizontal movement onset times can fully account for 

the log effect: when the onset times were controlled for (by aligning each trajectory to the trial’s 

movement onset time), the log effect in the regression analyses completely disappeared, and so 

did the inter-SOA differences in the linear factor.  

Experiment 3.2 also reaffirmed the main assumptions of the differential encoding time 

model, namely, that horizontal movement onset was earlier for smaller numbers, and that this 

small-number advantage was increased when increasing the level of interference from color 

naming (by shortening the color-number SOA). 

The use of a PRP design allowed exploring the nature of the interference between the color 

naming and number-to-position tasks. Several observations in the pattern of delays were 

compatible with a partial PRP effect. First, both tasks were delayed by the interference; in 

particular, the RT of the color naming task was not constant (as should have been the case if this 

task was systematically prioritized over the number task), but became slower at shorter SOAs. 

Second, while the onset of responses to the number task was also delayed at short SOA, the 

amount of this delay was not compatible with a full PRP effect. The number task was not delayed 

by a full 100 ms whenever the SOA decreased by this amount, but rather, by about 50%-70% 

of that value. Third, the size of the target number influenced the horizontal movement onset 
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time of task 2, but crucially this effect was not additive with SOA (as predicted by a rigid delay 

of task 2 due to a full PRP effect; Pashler et al., 1984, 1994) but was enhanced at short SOAs. 

All these findings indicate that color naming was not fully prioritized over finger pointing, 

which is perhaps not surprising given that participants were required to start moving the finger 

in order to make the target appear, and were therefore already “launched” in the number-to-

position task.  

The above observations are compatible with either a partial resource sharing model (Tombu 

& Jolicoeur, 2002), according to which both decisions are computed in parallel and are jointly 

slowed by dual-task interference, or by a rigid delay model (Pashler, 1984, 1994; Sigman & 

Dehaene, 2005) with random prioritization of one task or the other (Sigman & Dehaene, 2006). 

The latter interpretation predicts that our trials are a mixture of two trials types, depending on 

whether the central decision does color first and number second, or vice-versa. However, given 

the variability in task performance, this bimodal distribution model cannot be distinguished from 

the single distribution predicted by partial resource sharing. 

3.4. Experiment 3.3: 0-100 Number Line 

Experiments 3.1 and 3.2 supported the differential encoding time model: small numbers are 

encoded faster than large numbers, thereby inducing the transient log effect in the implied 

endpoints. The model stipulates that the reason for the small-number advantage is that quantity 

encoding is noisier for large quantities than for small quantities (differential variability), and the 

greater noise causes slower processing. However, an alternative account is that single-digit 

numbers are processed faster than two-digit numbers – i.e., what we observed in 

Experiments 3.1 and 3.2 was not a small-number advantage but a single-digit advantage. 

In the setting of Experiments 3.1 and 3.2, the two models are hard to tease apart, because 

over the range of target numbers that were analyzed for movement onset (0-14 and 26-40) most 

of the small numbers were single digits. To dissociate between the small-number advantage 

model and the single-digit advantage model, Experiment 3.3 used a longer number line (0-100) 

which allows excluding from the analysis the single-digit numbers and consequently the 

possibility for a confounding factor. 

3.4.1. Method 

Seventeen right-handed adults (aged 26;10 ± 5;2) with no reported cognitive deficits were 

compensated for participation. Their mother tongue was Hebrew. The experiment was 
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performed like the silent condition in Experiment 3.1, except that the number line extended from 

0 to 100 (rather than from 0 to 40). Each number between 0 and 100 was presented 4 times, i.e., 

404 non-failed trials per participant. The horizontal movement onset time was encoded as 

described in Section 3.2.2.4.1, while excluding trials with target numbers 39-61. Automatic 

onset encoding succeeded for 82.8% of the trials, and manual encoding increased this to 97.8%. 

The analyses of onset times (described below) were also performed without the manually 

encoded trials and the results were essentially the same.  

3.4.2. Results 

The rate of failed trials in this experiment was 2.9% ± 2.3%. The mean movement time was 

1191 ± 204 ms, the endpoint bias was -0.25 ± 1.13 numerical units, the endpoint error was  

4.69 ± 1.87 numerical units, and the horizontal movement onset time was 444 ± 113 ms (all 

standard deviations refer to the between-subject variance of the per-subject means). The median 

trajectories are presented in Fig. 3.9a. 

The trajectory data was submitted to regression analysis with iEP as the dependent variable 

and with five predictors: N0-100, log’(N0-100), the unit digit U, the spatial-reference-points-based 

bias function SRP, and the target number of the previous trial N-1. One regression was run per 

participant and time point in 50 ms intervals. The per-subject regression b values of each 

predictor and time point were compared with zero using t-test. The results (Fig. 3.9b) replicated 

the previous experiments: dominant linear factor, transient logarithmic factor, SRP contribution 

in the late trajectory parts, and an effect of the previous trial in early trajectory parts. When the 

regressions were re-run after aligning each trajectory to the trial’s horizontal movement time, 

the log factor disappeared (Fig. 3.9c), as predicted by the differential encoding time model. 

The small-number advantage was found in this experiment too, even when we analyzed only 

the two-digit numbers (Fig. 3.9d): the horizontal movement onset of targets in the range 10-38 

was shorter than that of targets in the range 62-90 by 22 ± 54 ms (the standard deviation refers 

to the between-subject variance of the per-subject means). To examine this difference 

statistically, the onset times were submitted to repeated measures ANOVA with within-subject 

factors of side (smaller or larger than 50) and distance from middle (|target-50|) and the subject 

as the random factor. Distance was a numeric factor and it grouped each set of 3 adjacent targets 

so the factor had 9 levels (12-14 to 36-38). A significant main effect of Side (t(16) = 1.84, one-

tailed p = .04, ηp
2 = .17, ηG

2 = .04) confirmed the small-number advantage within two-digit 

numbers, and thus refuted the “single-digit advantage” hypothesis. The Distance effect was also 
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significant (F(1,16) = 68.1, p < .001, ηp
2 = .81, ηG

2 = .18), with later onset times close to the 

middle of the number line, and there was no Side x Distance interaction (F(1,16) = 1.84,  

p = .19). Similar results were obtained when single digits were included in the analysis: targets 

0-39 had shorter movement onsets than 61-100 by 23 ± 55 ms. The Side x Distance ANOVA 

showed significant main effects of Side (t(16) = 1.87, one-tailed p = .04, ηp
2 = .18, ηG

2 = .05) 

and Distance (F(1,16) = 69.2, p < .001, ηp
2 = .81, ηG

2 = .21), with no interaction (F(1,16) = 0.91, 

p = .35). 

 
Fig. 3.9. Results of Experiment 3.3 (0-100 number line). (a) Median trajectories, created by re-sampling 

each trajectory into equally-spaced time points, finding the per subject+target median coordinates in 

each time point, and averaging these medians per target number. (b-c) Regression b values (dependent 

variable: iEP), averaged over participants. In (b), the trials were aligned to the trial start time and a 

significant transient log effect appeared. In (c), the trials were aligned to the horizontal movement 

onset time. This eliminated the log effect, as predicted by the differential onset time model. (d) Mean 

horizontal movement onset time per target. The black line is the average over trials and participants. 

The red line is the same data after Gaussian smoothing with σ = 3. Crucially, a significant small-number 

advantage was found not only over all targets but also within two-digit numbers, contrary to the notion 

that it originated only in processing speed differences between single-digit and two-digit numbers. 
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To characterize the distance effect, the horizontal movement onset times were regressed 

with three predictors: the target side (left = -1, right = 1), its distance from the middle of the 

line, and log(distance), linearly transformed to 0-50. The side effect was significant  

(b = -27.78 ms, t(6161) = 6.59, one-tailed p < .001). The log(distance) effect was significant  

(b = -5.28 ms, t(6161) = 9.39, one-tailed p < .001) and much stronger than the linear distance 

effect (b = -0.68 ms, t(6161) = 1.75, one-tailed p = .04), in accord with number comparison 

studies (Cantlon & Brannon, 2006; Dehaene, 1989; Dehaene et al., 1990).  

3.4.3. Discussion of Experiment 3.3 

Experiment 3.3 showed a small-number advantage, earlier onset of horizontal movement for 

smaller targets than for large targets, even within two-digit numbers. Thus, the small-number 

advantage cannot be discarded as faster processing of single digits; it is a genuine phenomenon 

in processing of two-digit numbers. 

Experiment 3.3 also replicated the other major findings of our previous experiments: the 

regressions showed a strong linear factor, a transient log factor (which was eliminated when 

aligning trajectories by the movement onset time), and a spatial-reference-points effect in the 

late trajectory parts. The replication of these findings using a 0-100 number line confirms that 

they do not reflect strategies specific for the 0-40 range (e.g., trying to memorize the positions 

of decade boundaries – a strategy overtly used by several participants in the 0-40 experiments, 

but not in the 0-100 experiment). 

Interestingly, whereas our previous experiments showed that the decade digit was processed 

parallel to the unit digit (Experiments 3.1 and 3.2) or slightly after it (Chapter 2), in 

Experiment 3.3 the regressions showed a strong effect of the unit digit. Although absent from 

the aligned-by-onset regressions, this effect suggests decomposed processing of the unit 

quantity. The exact nature of this decomposed processing cannot be unambiguously determined 

by the present experiment, and will be further discussed in Chapter 4. For a discussion of 

possible interpretations of the unit digit effect, see Section 2.4.4. 

3.5. Non-Transient Logarithmic Effects 

The differential encoding time model attributes the logarithmic mapping to delayed 

horizontal movement onset in trials with large target numbers. Presumably, the effect of this 

delay will not last forever: eventually, even the large-target trajectories catch up with the small-

target trajectories, and the differences in horizontal movement onset become irrelevant as other 
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factors start governing the finger movement. Thus, the differential encoding time model can 

account only for a transient logarithmic effect, which disappears in late trajectory parts. Indeed, 

this was the pattern observed in Experiments 3.1, 3.2, and 3.3. Several other studies, however, 

reported non-transient logarithmic effects, which were observed even in the endpoints – in 

children (Berteletti et al., 2010; Booth & Siegler, 2006; Opfer & Siegler, 2007; Siegler & Booth, 

2004) and in a brain-injured adult (described in Chapter 9). 

We hypothesized that the differential encoding time model will not be able to explain such 

non-transient logarithmic effects. To test this prediction, Experiment 3.4 examined the number-

to-position mapping of 4th grade children. We also re-analyzed the number-to-position mapping 

data of ZN (described in detail in Chapter 9), a brain-injured adult who showed a logarithmic 

effect in the trajectory endpoints. We examined whether the log effect in these cases would be 

observed even when the trajectories are aligned by the movement onset time. 

3.5.1. Experiment 3.4: Fourth Grade Children 

3.5.1.1. Method 

Forty-three Hebrew-speaking 4th grade children (aged 9;9 ± 0;4), recruited from a single 

elementary school in Tel Aviv, participated voluntarily in this experiment, with written 

informed consent of their parents. They performed the silent number-to-position mapping task 

described in Experiment 3.1. Each number between 0 and 40 was presented 4 times. 

Visual inspection of the results suggested that the children’s trajectory data was noisier than 

the adults’. We therefore calculated several per-participant quality measures and excluded 

participants with especially noisy data. Two measures were based on the finger’s initial direction 

θ0. This direction is presumably independent of the target number, and may reflect a bias, noise, 

or over-relying on prior trials, all of which could potentially disrupt the trajectory analysis. The 

value of θ0 was calculated per trial using regression analysis with x coordinate as the dependent 

variable and y coordinate as the predictor, over all time points (in 10 ms intervals) from 0 to 160 

ms, or from 0 to 100 ms if the first regression was non-significant. We excluded one participant 

whose σ(θ0) was an outlier (higher than the participants’ 75th percentile by at least 150% the 

inter-quartile range), and 4 participants whose mean θ0 was an outlier to the left or to the right 

(mean(θ0) higher than the participants’ 75th percentile or lower than their 25th percentile by at 

least 150% the inter-quartile range). We also excluded 3 participants who had low correlation 

(r < .6) between the endpoints and the target number. For the remaining 35 children (aged  
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9;8 ± 0;4), the horizontal movement onset time was encoded per trial as described above 

(Section 3.2.2.4.1), excluding target numbers 15-25. The encoding succeeded for 63.9% of the 

trials automatically and for 87.3% of the trials after manual encoding. 

3.5.1.2. Results. 

 
Fig. 3.10. Median trajectories and the regression b values in Experiments 3.4 (4th grade children) and 

the data of the brain-injured aphasic patient ZN. (a,d) The median trajectories. (b,e) Regression b 

values, with the trajectories aligned by the target onset. (c,f) The b values of the regression after 

aligning each trial to its horizontal movement onset time. A significant log effect was found both in 

Experiment 3.4 and in ZN's data. This log effect cannot result from different movement onset times per 

trial, because the alignment by onset controlled for this factor. 
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The median trajectories are presented in Fig. 3.10a. The trajectory data was submitted to 

regression analysis with the iEP as the dependent variable and with 5 predictors: N0-40,  

log’(N0-40), the unit digit U, SRP, and the previous target N-1. One regression was run per time 

point, in 50 ms intervals. These regressions (Fig. 3.10b) showed a strong log effect that lasted 

until the end of the trial and was observed even in the endpoints (see the endpoints in Fig. 3.10a). 

The trajectory data was then submitted to a similar regression in which each trajectory was 

aligned to the trial’s horizontal movement onset time, and the N-1 predictor was removed 

(Fig. 3.10c). This alignment eliminated the log factor from the initial trajectory parts, but a 

significant log factor was still observed in the late trajectory parts (from 200 ms post movement 

onset time) and in the endpoints – a finding that is not predicted by the differential encoding 

time model. 

3.5.2. Reanalysis of Patient ZN’s Data 

ZN was a 73 years old man who was recovering from a stroke. He was diagnosed with 

aphasia, severe apraxia of speech, impaired comprehension, dyslexia, dysgraphia, 

agrammatism, and a selective deficit in converting multi-digit numbers to their verbal 

representation (but not to quantity). In Chapter 9 we describe in detail his performance in several 

number processing tasks, including the iPad-based number-to-position task, which he performed 

like the silent condition in Experiment 3.1, with each number between 0 and 40 being presented 

4 times. To re-analyze ZN’s data, we encoded the horizontal movement onset time of each trial 

using the method described above (Section 3.2.2.4.1), excluding target numbers 15-25. This 

encoding succeeded for 63.3% of the trials automatically and for 95.8% of the trials after manual 

encoding. 

ZN’s trajectories are presented in Fig. 3.10d. They were submitted to regression analysis 

with iEP as the dependent variable and with 5 predictors: N0-40, log’(N0-40), the unit digit U, 

SRP, and the previous target N-1. One regression was run per time point, in 50 ms intervals. 

This regression (Fig. 3.10e) showed a strong log effect that lasted to the end of the trial and was 

observed even in the endpoints. 

The trajectory data was then submitted to a similar regression in which each trajectory was 

aligned to the trial’s movement onset time, and the N-1 predictor was removed (Fig. 3.10f). In 

line with the differential encoding time model, the log factor was eliminated from the initial 

trajectory parts. However, contrary to the prediction of the differential encoding time model,  
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a clear log effect was observed in the late trajectory part of the aligned-by-onset regressions 

(from 600 ms post movement onset time). 

3.5.3. Discussion of Experiment 3.4 and Patient ZN's Data 

The main finding from the data of the 4th grade children (Experiment 3.4) and of patient ZN 

was a non-transient log effect, which was observed in late trajectory parts and in the endpoints. 

This log effect was not eliminated even when we aligned each trajectory to the trial’s horizontal 

movement onset time. Thus, the log effect cannot be explained by pre-movement differential 

processing durations, as suggested by the differential encoding time model. We also found no 

evidence that the log effect in Experiment 3.4 could be explained by quantity-dependent 

weighting of prior trials. In this respect, our results were different from Cicchini et al. (2014): 

although both studies found logarithmic effect in the endpoints, we did not replicate their finding 

of larger prior weight for large-target trials. This difference could be related to the fact that we 

used symbolic targets, while they used a non-symbolic display (sets of dots). 

How should we explain, then, the log effect in the performance of ZN and of the 4th grade 

children? We think that two classes of explanations remain tenable. The first class of 

explanations reverts to the notion of dual quantity representation – linear-exact and approximate. 

The late log effect would result from amplified approximate representation and decreased exact-

linear representation (the early log effect may result either from amplified approximate 

representation or from differential encoding times). The difference between the performance 

patterns of children and adults in the number-to-position task would then indicate a conceptual 

log-to-linear shift, as suggested in previous studies (Dehaene et al., 2008; Opfer & Siegler, 

2007). Does this log-to-linear shift truly result from a change in the quantity representation, 

which begins as approximate and gradually becomes linear with maturation or education?  

Or perhaps the log-to-linear shift reflects the addition of a separate linear-exact representation 

on top of the approximate representation, and consistent inhibition of the approximate 

representation by the exact? The finding of logarithmic mapping in the performance of ZN 

support the latter possibility: ZN worked as an engineer for many years, and reported being 

extremely fluent with numbers, so it seems unlikely that his quantity representation remained 

approximate throughout the years. It also seems unlikely that his brain injury transformed the 

now-linear quantity representation back into approximate. It seems more likely that his 

logarithmic mapping reflects an approximate representation that was dormant in his cognitive 

system and re-emerged following a selective impairment to the linear-exact representation. 
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The second class of explanations for the late log effect is a variant of the differential 

encoding time model. It assumes that in children and in patient ZN, unlike in adults, the initial 

decision to move is based on insufficient evidence. Even if the participants understand the linear 

requirement of the task and intend to move to the linear position of the target, they may err if 

the decision process is fed with exceedingly noisy evidence. The participant may then stop short 

of making the proper inference and start moving based on a partial approximate numerical 

representation. Since this representation is more precise for small than for large numbers, the 

movement will be more accurate (more systematically away from the default response) for small 

than for large numbers, resulting in a log effect. In the discussion of this chapter, we verify this 

property in a precise mathematical model of the task. In adults, this log bias, if it exists at all, 

would be quickly compensated by new adjustments of finger position even after the onset of the 

first horizontal movement, resulting only in a transient log effect. If such a correction is 

impossible, however, then the log effect will remain sustained. 

At present, we cannot decide between those two interpretations. However, the behavioral 

finding of logarithmic mapping in children is in accord with several previous developmental 

studies that used number-to-position mapping without tracking trajectories. These previous 

studies found logarithmic mapping only until second grade (Opfer & Siegler, 2007) or an earlier 

age (Berteletti et al., 2010; Booth & Siegler, 2006; Siegler & Booth, 2004), whereas here we 

found a log effect even in 4th grade children, i.e., in a group that was at least two years older. It 

is possible that our paradigm, which requires a time-limited response and minimal finger 

velocity, was more demanding than the paradigms used in these previous studies, and therefore 

increased the logarithmic effect. Such interpretation seems plausible given that, in 

Experiments 3.1 and 3.2, we found that increasing task demands increases the log effect. 

A peculiar finding in the children data, which was not observed in any of the adult 

experiments, is a strong negative effect of the unit predictor in the regressions (Fig. 3.10b,c). 

This could mean that the unit effect was either reduced or delayed relatively to the decade effect. 

However, interpreting this finding as delayed processing of the unit quantity seems unlikely, 

because b[U] < 0 continues throughout the trial (i.e., the unit digit never catches up with the 

decade digit). The b[U] < 0 can therefore be explained in two ways: either the decade and unit 

quantities were not encoded in 1:10 ratio but with under-representation of the unit digit; or the 

unit digit was completely ignored in some trials, resulting in lower b[U] in the regression 

analysis. Importantly, both explanations suggest that even as late as 4th grade, the processing of 
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two-digit numbers is not fully automated. Previous studies pointed to the log-to-linear shift as 

one kind of cognitive progress that happens during maturation or education (Berteletti et al., 

2010; Dehaene et al., 2008; Opfer & Siegler, 2007); the data from Experiment 3.4 suggests that 

the assigning proportional weights to the decade and unit quantity may be another cognitive 

ability that develops with age or education. 

3.6. Experiment 3.5: Validating the Movement Onset Detection 

Algorithm 

In all experiments so far, the horizontal movement onset was calculated based on the finger's 

horizontal velocity profile. To make sure that the onset-detection algorithm did not create some 

statistical artifact, we administered the number-to-position mapping experiment using a slightly 

modified paradigm: the participants started moving their finger only after the target number 

appeared on screen (hereby, stimulus-then-move paradigm). This is the method used in many 

trajectory-tracking experiments (e.g., Finkbeiner et al., 2008; Santens et al., 2011; Song & 

Nakayama, 2008a, 2008b, 2009). While the stimulus-then-move paradigm does not allow for 

continuous monitoring of cognitive processes at early time points, it has the advantage that the 

movement onset time can be measured directly rather than calculated statistically. 

3.6.1. Method 

Twenty right-handed participants aged 28;11 ± 6;11 were compensated for participation. 

Their mother tongue was Hebrew and they had no reported cognitive disorders. The method was 

similar to the silent condition in Experiment 3.1, except the way a trial was initiated. When the 

participants touched the initiation rectangle, a fixation cross appeared, and was replaced by the 

target number after a random duration between 500 - 1500 ms. The participants were instructed 

to move their finger as soon as the target number appeared, but not before that. The movement 

onset time was registered as the time from stimulus onset until the finger reached the y = 50 

pixels coordinate (measured from the bottom of the screen). Movement onset lower than 100 

ms or higher than 1000 ms resulted in a failed trial. Each number between 0 and 40 appeared 4 

times, i.e., 164 non-failed trials per participant.  

3.6.2. Results 

The rate of failed trials was 3.17% ± 2.26%. The failures were due to moving the finger too 

early (13.9%) or too late (44%), to violation of the minimal-velocity policy (32%), or to lifting 

the finger in mid-trial (10.1%). The movement onset time was 623 ± 139 ms, and the movement 
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time (from movement onset until reaching the number line) was 529 ± 110 ms. The endpoint 

bias was -0.52 ± 0.47 numerical units and the endpoint error was 1.68 ± 0.44 numerical units 

(all σ refer to the between-subject variance of the per-subject means). 

Fig. 3.11a shows the median trajectories in this experiment. The trajectories are clearly 

different from the previous experiments: whereas in the movement-triggers-stimulus paradigm 

the finger initial movement was towards the middle of the number line, in the present experiment 

the movement was typically aimed more or less directly towards the target number, right from 

the start. This suggests that the finger movement started only after an initial decision was made 

about the quantity and the corresponding target position. Note that this pattern is not the result 

of averaging several trials – it is observed in single trials too (Fig. 3.11b).  

 
Fig. 3.11. Results of Experiment 3.5 (stimulus-then-move paradigm). (a) The median trajectories, 

averaged over participants. (b) Sample raw trajectories of one participant to four specific target 

numbers. In panels (a-b) the y axis reflects the iPad screen vertical dimension, so we can see that the 

finer moves towards the target number right from the start. (c) Regression b values. (d) Movement 

onset times per target number. The black line is the average over trials and participants. The red line is 

the same data after Gaussian smoothing with σ = 2. Onset times were shorter for targets < 20 than for 

targets > 20, and were shorter near the ends of the number line than around the middle. 
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The trajectory data was submitted to regression analysis with iEP as the dependent variable 

and with five predictors: N0-40, log’(N0-40), the unit digit U, the spatial-reference-points-based 

bias function SRP, and the target number of the previous trial N-1. One regression was run per 

participant and time point in 50 ms intervals. The per-subject regression b values of each time 

point and predictor were compared versus zero using t-test. A strong effect of the target number 

N0-40 was found from the time of movement onset (Fig. 3.11c), confirming that the finger aimed 

more or less towards the target number right from the start. The log effect did not make a positive 

significant contribution at any time point. There was a clear effect of the spatial reference points 

predictor, and there was a ~10% over-representation of the unit digit relatively to the decade 

digit (reflected by the positive contribution of the U predictor). Unlike the previous experiments, 

no contribution of the previous-target predictor N-1 was found at any time point – i.e., by the 

time a decision was made to move the finger, the present-trial quantity has completely 

overridden the prior trial effect. 

The critical analysis in this experiment is that of the movement onset times per target 

(Fig. 3.11d). The onset times (excluding target = 20) were submitted to repeated measures 

ANOVA with a between-subject factor of side (left, right) and a numeric between-subject factor 

of distance from 20. A main effect of side (F(1,19) = 28.36, p < .001, ηp
2 = .60, ηG

2 = .02) 

confirmed the small-number advantage: movement onsets for numbers < 20 (mean = 606 ms) 

were shorter than for numbers > 20 (mean = 634 ms). A main effect of distance (F(1,19) = 39.74, 

p < .001, ηp
2 = .68, ηG

2 = .02) replicated the findings in previous experiments: movement onset 

was shorter when the target number was closer to the ends of the number line. The  

Side x Distance interaction was significant too (F(1,19) = 19.03, p < .001, ηp
2 = .50, ηG

2 = .01). 

A comparison of Fig. 3.11d with Fig. 3.4 shows that the movement onset times in the present 

experiment (move-then-stimulus-paradigm) were longer than the times detected by our onset-

detection algorithm in the movement-triggers-stimulus experiments. This difference was 

confirmed by a within-participant analysis: Thirteen of the 20 participants in Experiment 3.5 

also performed the silent 0-40 experiment in the movement-triggers-stimulus paradigm. The 

movement onset times of these participants in the stimulus-then-move paradigm (620 ± 84 ms) 

were longer than the onset times detected in the movement-triggers-stimulus paradigm  

(448 ± 46 ms; paired t(12) = 6.05, two-tailed p < .001, Cohen's d = 1.68; targets 15-25 were 

excluded from this analysis). 
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3.6.3. Discussion of Experiment 3.5 

The stimulus-then-move paradigm replicated the major effects found in the movement-

triggers-stimulus paradigm. In the regression analysis, the finger movement was dominated by 

the linear quantity representation, with no logarithmic effect – similarly to the aligned-by-

movement-onset regressions in Experiments 3.1-3.3. This provides further support to the 

differential encoding time model: when the movement onset is controlled for – either 

statistically, as in Experiments 3.1, 3.2, and 3.3, or methodologically, as in the present 

experiment – the log effect completely vanishes. 

The detailed analysis of movement onsets fully replicated the pattern observed in the silent 

conditions in Experiments 3.1, 3.2, and 3.3: earlier onsets for target numbers on the left side 

(small-number advantage), and a distance effect such that onset times are later close to the 

middle of the number line. The replication of these effects with the stimulus-then-move 

paradigm confirms that these are genuine effects that do not result from a statistical artifact of 

the onset detection algorithm. This is especially important with respect to the distance effect: 

the onset detection algorithm relies on the horizontal velocity, and may consequently detect 

earlier movement onsets when the horizontal velocity is higher, which is typically the case when 

the target number is closer to any end of the number line. The replication of the distance effect 

in Experiment 3.5, in which the movement onset was measured directly rather than calculated, 

refutes the statistical artifact interpretation and shows that the distance effect has a cognitive 

origin. Note also that an analogous distance effect was observed by Cicchini et al., (2014, Fig. 

3B): their analysis showed higher previous-trial-weights for targets close to the middle of the 

number line. 

How can we explain this distance effect? One possible explanation is inspired by models 

suggesting that the trigger to change a motor action is the existence of an internal comparison 

between the action which is intended and the action which is currently being executed (Charles, 

King, & Dehaene, 2014; Fishbach, Roy, Bastianen, Miller, & Houk, 2007). In Experiments 3.1 

to 3.4, participants are asked to initially point towards the middle of the line. Even when the 

finger is initially at rest (Experiment 3.5), the motor system might encode a default action of 

pointing towards the optimal location given the distribution of target numbers, which is again 

the middle of the number line. As the target-induced intention-to-move builds up, the intention-

movement comparison mechanism would predict that the difference between the planned 

location and the middle of the number line must cross a fixed threshold before the finger starts 
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moving towards the target. What we described in this chapter as "movement onset" would thus 

reflect the first decision to change the motor action. The duration of this decision process would 

be affected by the difference between the default action location (the middle of the number line) 

and the target number: the farther the target is from the middle of the number line, the larger 

this difference and therefore, the faster the decision threshold is reached – namely, earlier 

movement onset time. 

Methodologically, Experiment 3.5 sheds some light on the similarities and differences 

between the stimulus-then-move paradigm (StM) of Experiment 3.5 and the movement-triggers-

stimulus paradigm (MTS) of the previous experiments. The StM paradigm may have the 

advantage of a clearer separation between the two stages involved in this task – the decision 

stage, whose duration can be directly measured by the movement onset time, and the pointing 

stage, which is reflected by the finger trajectories. The StM paradigm also seems to allow for 

less noisy measurement of movement onsets, as the ANOVA's on movement onset times 

resulted in much stronger effects in Experiment 3.5 than in the previous experiments. The MTS 

paradigm, however, may be superior in its sensitivity to early processes: the onset times we 

detected in the MTS paradigm were much shorter than the onset times measured in the StM 

paradigm. One possible reason for this could be that initiating a movement takes longer than 

changing the direction of an existing movement (Pisella et al., 2000). Another possibility is that 

the longer onsets in Experiment 3.5 resulted from the relatively relaxed limit on movement 

initiation (up to one second from the stimulus onset). Shortening this limit would probably 

encourage earlier finger movement. Indeed, some implementations of the stimulus-then-move 

paradigm required participants to initiate movement as quickly as 200-350 ms from the “go” 

signal (Finkbeiner et al., 2014; Finkbeiner & Friedman, 2011). Such short time limits could 

make the StM paradigm more similar to the MTS paradigm – presumably at the cost of less 

reliable measurement of movement onset and the duration of the decision stage. 

3.7. Discussion of Chapter 3 

3.7.1. Understanding the Number-to-Position Task 

In a series of experiments, we investigated how two-digit Arabic numbers are encoded as 

quantities in a number-to-position mapping task, which forces participants to convert a numeral 

into a quantity. To analyze the series of stages involved in this task, we obtained a nearly-

continuous measurement of finger position, and we used a dual-task setting to perturb specific 
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stages. In Experiment 3.1, the distraction was manipulated by introducing a simultaneous color-

naming distracter task and comparing it with the single-task condition. In Experiment 3.2 we 

administered only the dual task, and the distraction was manipulated by changing the SOA of 

the target color and number. An analysis of the finger trajectories showed similar patterns in 

both experiments: in the experimental conditions with high distraction (color naming in 

Experiment 3.1, shorter SOA’s in Experiment 3.2) the participants’ number-to-position 

mapping became less linear, and in Experiment 3.1 also more logarithmic – a clear dissociation 

between the log and linear factors. 

A careful analysis of the finger movement, however, showed that this log-linear dissociation 

cannot be taken as direct evidence for two distinct quantity representations, because a simpler 

interpretation can account for the results. This interpretation assumes that the finger horizontal 

movement onset is earlier for smaller target numbers, presumably because their quantity 

representation is less fuzzy than that of large numbers, which results in faster encoding of small 

numbers. As a result, the trajectories fan out more quickly for smaller number than for larger 

numbers, and this induces a transient log effect in the regressions. The interference from color 

naming further enhances this small-number advantage, thereby increasing the log effect. This 

interpretation is supported by the finding that the horizontal movement onset time is increased 

for larger numbers. As shown by Experiment 3.3, this small-number advantage cannot be 

dismissed as a difference between processing single-digit numbers and two-digit numbers. The 

interpretation is further supported by the finding that aligning the trajectories on movement 

onset times completely eliminated the logarithmic effect, revealing only a linear mapping of 

numbers to positions.  

Our best interpretation of the data is that the number-to-position mapping task involves 

separate processes of quantification, decision by evidence accumulation, and pointing 

(Fig. 3.12a). The quantification process converts the two-digit number into a quantity 

representation. The decision process maps the quantity representation to a planned position. The 

pointing process aims the finger to the planned position. 

The duration of the decision stage is affected by at least two factors: (1) Number size: large 

numbers take longer to process than small numbers, presumably because of differential 

variability in the output of the quantification process (in line with previous studies, e.g., 

Brysbaert, 1995; Li & Cai, 2014; Schwarz & Eiselt, 2009). (2) Distraction (here induced by the 

color-naming dual task), which delays the accumulation of evidence arising from the target 
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number (again in line with previous studies of decision making, e.g., Sigman & Dehaene, 2005). 

Because of partial resource sharing, these two factors interact, so the size of this dual-task delay 

may also depend on number size, with large quantities suffering from a larger delay than small 

quantities. 

3.7.2. A Mathematical Model of the Number-to-Position Task 

In order to flesh out those ideas, we now present an explicit mathematical model of the 

number-to-position task. The model provides a “rational” or “ideal observer” analysis, i.e., it 

examines how any rational agent should endeavor to perform this task if it is endowed with 

exact and/or approximate representations of number. As we will see, such an optimal observer 

closely predicts human behavior. 

We adopt here the same assumptions as in a previous mathematical model of several 

numerical-decision tasks (Dehaene, 2007). First, at the quantification stage, the quantity 

associated with the target number is encoded as a time series of independent and identically 

distributed noisy samples st, which are sampled from an internal random distribution. Second, 

at the decision stage, based on these samples, the posterior distribution over all possible target 

locations is continuously updated, until a threshold level is achieved and the model commits to 

a specific location. Third, at the pointing stage, the planned location is used to guide the finger 

motor movement. We now present detailed equations for each step. 

Number representation. Following Dehaene (Dehaene, 2007), we assume that within each 

of the two quantity representation systems, the target number T is represented at any given time 

step t by a noisy sample s(t) (see Table 3.4 for a legend of all the notations used here and 

throughout this mathematical modeling section). The successive samples s(t), s(t+1), etc., are 

assumed to be independently and identically distributed (i.i.d) according to a Gaussian 

distribution  

�(�|�) = �
�( )√�" #�($%&('))²

)*(')² = +,-��.,/0�, 2 = 3(�), 4 = 4(�)5    [2] 

As this expression indicates, the samples s are centered on the value c(T), which is a strictly 

increasing function of target number T representing the hypothesized internal scale for 

numerical quantity (e.g., linear or logarithmic). 4(�), which may also vary as a function of T, 

is the standard deviation of the noise on this representation. The choice of functions c(T) and 

4(�) defines the nature of the internal representation of numbers. For an approximate 

representation, we may assume either a linear code with scalar variability, i.e. 3(�) = � + 1 
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and 4(�) = 7�(� + 1); or a log-Gaussian coding with fixed variability, i.e. 3(�) = log(� + 1) 

and 4(�) = 7�. In both cases, 7� is a constant, and the +1 term avoids singularity when the 

target is 0. For an exact representation, we take 3(�) = � and 4(�) = 7� (where 7� is another 

constant). 

Table 3.4. Notations used for modeling. 

Notation Meaning 

T A target number presented in the experiment 

sapprox, sexact A quantity sample sent from the quantification mechanisms 
(approximate, exact) to the decision process 

n A possible target number (this notation is used mostly for enumeration 
over all possible targets) 

r A response (decision on a target number) considered by the participant  

;̂ The response decided by the Bayesian decision process 

λ The slope of the linear distribution of target numbers, as perceived by the 
participant. Actual targets were distributed evenly (λ=0), but the 
participants did not know that and may consider various λ values, in 
distribution denoted p(λ). 

Gaussian(x,μ,σ) The probability to get a value x given a Gaussian distribution with mean μ 
and standard deviation σ 

c(T), σ(T) The mean and standard deviation of a Gaussian distribution of sample 
quantities given a target number T 

Subscripts 
Xt The value of X at time point t within a trial 

X i The value of X at trial i 

Constant parameters in the model 
k1 Scaling factor for the approximate quantity representation standard 

deviation  
k2 Standard deviation of the exact quantity representation 

k3 Forgetting factor: the probability to keep the prior distribution p(λ), the 
perceived target bias (1-k3 is the probability to revert to a flat prior) 

θ Posterior probability threshold for deviating the finger 

τapprox, τexact The time (within a trial) in which the quantity samples sapprox, sexact start 
arriving in the decision process. 

In the following, we assume, for maximal generality, that exact and approximate 

representations co-exist, are activated in parallel, and generate independent samples. At any 

time t, the information available for decision is therefore comprised of the two sets of samples 

from time=0 to time=t, i.e., {�>�?@�(A′)}�DE�  and {�?FFGH�(A′)}�DE� . 
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Accumulation of evidence. By definition, the ideal observer computes, for every possible 

response location, the posterior probability that this location is the correct one given the set of 

past samples. In the number-to-position task, there are as many response locations as there are 

target numbers, and therefore the inference is equivalent to inferring the likelihood of the current 

target number being n, given the set of past samples until time=t. Using Bayes’ theorem, we get  

�I�A#;.I;�(/) ≡  �(/|�,�A �,K�L#�) ∝
                          �({�>�?@�(A′)}�DE�|/)    �0{�?FFGH�(A′)}�DE�N/5    �(/)             [3] 

(note that this equation makes uses of the symbol α meaning “proportional to” – this is because, 

for simplicity, the denominator in Bayes’s rule has been omitted; it is implicitly assumed that 

the posterior probabilities are normalized by a multiplicative constant in order to sum to 1 at 

each time step t). 

In equation [3], �(/) is the prior distribution of target numbers. In the simplest ideal-

observer version of the model, the prior is supposed to be flat, in agreement with the fact that, 

in our experiments, all target numbers in the proposed range are equally likely. Thus,  

�(/) = �
OPQRSTP$

, where /�?GU>�V is the number of possible targets (/�?GU>�V = K,W − K./ + 1). 

Further below, we consider more complex options for the prior. 

Given the independence of successive samples, the model reduces to a simple updating rule. 

Starting from the prior p(n), on each time step t the optimal observer model receives two new 

random samples – �>�?@�(A) and �?FFGH�(A) – and uses them to update the posterior probability 

that the correct response is n, using the equation 

�I�A#;.I;�(/) ∝ �I�A#;.I;���(/) �0�?FFGH�(A)N/5 �(�>�?@�(A)|/)                  [4] 

(again up to a multiplicative constant, such that the posterior probabilities always sum to 1). 

Simulating the random walk inherent to equation [4] requires expensive computations 

(generating many trials with random samples at each time step). For a faster, deterministic 

approximation, we can replace each of the two random multiplicands �0�?FFGH�(A)N/5 and 

�(�>�?@�(A)|/) by their time-independent expected value. For a trial with target number T, the 

expected value of �>�?@� is: 

Y0�(�>�?@�|/)5 = Z �(�>�?@�|/) �(�>�?@�|�) [�>�?@�
\

�\                  [5] 

The expected value of �?FFGH� is calculated with the same formula, replacing �>�?@� by �?FFGH�. 

Although this equation looks symmetrical, note that T represents the target number that was 
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actually presented in the trial, whereas n represents the participant’s enumeration of all possible 

target numbers. 

The product of two Gaussians is itself a Gaussian, so formula [5] yields 

Y0�(�>�?@�|/)5 = +,-��.,/ ]3(/), μ = 3(�), σ = `4(/)� + 4(�)²a           [6] 

and similarly for �?FFGH�. 

By plugging into this equation the parameters for approximate and exact representation, and by 

replacing both �0�?FFGH�(A)N/5 and �(�>�?@�(A)|/) in equation [4] by their expected values 

according to equation [6], we obtain a deterministic approximation of the updating rule for the 

posterior, given that the target number is T:  

For log-Gaussian coding: 
[7] 

posteriort(n|T) ∝ posteriort-1(n|T) Gaussian(log(n+1), μ=log(T+1), σ=k1√2) Gaussian(n, μ=T, σ=k2√2) 

And for linear scalar variability coding: 

posteriort(n|T) ∝ posteriort-1(n|T) Gaussian(n, μ=T, σ=k1`/² + �²) Gaussian(n, μ=T, σ=k2√2)     [8] 

Numerically, equations [7] and [8] yield virtually identical results, thus demonstrating the 

near-complete behavioral equivalence of the log-Gaussian and scalar variability models 

(Dehaene, 2007). In the following simulations, we therefore adopt only the log-Gaussian model 

(equation [7]).  

Simulations presented in Fig. 3.12b illustrate how the posterior evolves in the course of the 

trial for two specific target numbers. Initially, the distribution is flat, and then it evolves to an 

increasingly sharp peak centered on the target number. Indeed, equation [7] clearly shows that 

the “bump” in the posterior distribution is always centered at the appropriate target location on 

the number line, i.e. the highest posterior probability is reached for n = T. However, the 

sharpening of the posterior is faster for small than for large numbers.  

Cost function and decision. The above equations specify how the posterior probability 

distribution of the correct numerical response evolves with time, but not how participants 

transform this distribution into an intention to move. In any Bayesian decision task, the optimal 

use of the posterior distribution depends on the cost function imposed by the experimental 

setting (Maloney & Zhang, 2010). Here, as the task requires minimizing the distance between 

the finger location and the actual target location on the number line, we stipulate a quadratic 

cost function: 
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3I�A(;) ∝ (; − �)²                   [9] 

where T the actual target number and r is the subject’s intended numerical response. At any time 

t, we assume that participants pick up, out of all possible responses r, the one that minimizes the 

expected cost: 
;̂ = argmin

G
(E(cost(r))) = argmin

G
(∑ �I�A#;.I;�(/|�) (; − /)²O )           [10] 

The solution of this equation is the mean of the numbers n, weighted by their posterior 

probability: 

;̂ = ∑ �I�A#;.I;�(/|�)⋅ /O                   [11] 

This equation has the following experimental implications: (1) In the absence of information 

about the target, given that all targets are equiprobable, participants initially point to the center 

of the number line, i.e., the location that minimizes the quadratic error; (2) As increasingly 

precise evidence is gathered about the target value, the intended response location deviates 

progressively from this mid-point value. 

Movement. For each target number, the model specifies the subject’s optimal intended 

response at each time step. To compare these numerical estimates with the motor trajectories 

recorded, we need to model how a numerical intention is translated into a finger trajectory.  

A complete model would entail answering each of the following theoretical issues:  

(1) When does the finger move? Do participants wait until a threshold amount of evidence is 

accrued, or is the evidence continuously passed on to the motor system? (2) How does the finger 

move? Is a target direction programmed once per trial, and then translated into a velocity profile? 

Is the direction updated continuously? Or is it revised only at discrete times, e.g., whenever the 

anticipated finger location deviates from the intended location by a sufficient amount (Fishbach 

et al., 2007), as suggest by previous “change-of-mind” results (Resulaj, Kiani, Wolpert, & 

Shadlen, 2009)? 

Answering these questions is clearly beyond the present research program. Here, we present 

simulations of the simplest possible model. Based on prior research on decision making (Gold 

& Shadlen, 2001), we assume that the decision to move is based on the accumulation of evidence 

towards a fixed probability threshold θ, i.e., movement starts whenever the posterior probability 

of one of the target locations exceeds this threshold value. At this moment, the movement 

process sends the finger to the location that minimizes the average square error, as described 
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above. Finally, movement is implemented with the typical bell-shaped velocity profile 

characterizing limb motion (Flash & Hogan, 1985; Friedman et al., 2013).  

 
Fig. 3.12. Model and simulations of the processing stages in the number-to-position task. (a) Proposed 

stages. Incoming digits are identified and the corresponding quantity is separately encoded in 

approximate and exact systems. Next, evidence accumulation is used to infer the posterior distribution 

of target locations given the incoming noisy samples. Finally, a pointing stage brings the finger to the 

location that minimizes pointing errors. (b-f) Simulation results. (b) The posterior probability function 

in different time points, for two specific target numbers. As the trial progresses the posterior curve 

becomes steeper. Crucially, the curve converges more quickly for small target numbers such as 5 than 

for symmetric large target numbers such as 35. (c) Small-number advantage: the horizontal movement 

onset times are earlier for small target numbers than for larger targets. The onset times were calculated 

using the onset detection algorithm described above (Section 3.2.2.4.1). (d) Median trajectories.  

(e-f) The regression b values (dependent variable = x coordinate, predictors = N0-40, log'(N0-40), unit digit, 

SRP, and the last 5 targets). The regression captures several effects of the real data – strong linear 

factor, transient logarithmic factor, and an effect of several prior trials in early trajectory parts, which 

decays exponentially for older trials. 
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Under this assumption of a single movement, given that the posterior distribution is sharper 

for small numbers than for large numbers, the movement onset time should always be slower 

for large compared to small numbers. However, the choice of the threshold θ has a crucial impact 

on the shape of the response function. If the participants use a low threshold θ, the finger deviates 

towards the decided location early on, at a time when the posterior distribution is sharp for small 

target numbers but not for large ones. This results in a greater separation between small numbers 

than between large numbers, leading to an approximately logarithmic response pattern (as 

observed in children and in patient ZN). If the participants use a higher threshold θ, the finger’s 

deviation towards the decided location happens later, at a time when the posterior distributions 

for both small and large numbers are already sharply centered on the appropriate target value, 

so the responses become arrayed in a linear manner.  

Effect of prior targets. In our experiments, the prior p(n) was flat over all target numbers. 

The participants, however, were not told this, and may (explicitly or implicitly) believe that 

some targets are more likely than others. In agreement with this idea, in all experiments, we 

observed an effect of the recent target numbers on the early part of the trajectory. Such a prior-

trial effect cannot be explained merely as a perseveration of the motor response on the 

immediately previous trial, because that response was influenced solely by the target of that 

particular trial and not of the previous trials. As we shall now see, the exponentially decreasing 

influence of previous targets can be explained as a constantly updated Bayesian prior over the 

possible targets. 

Formally, we capture this idea using a second-order optimal observer model. The 

assumption is that subjects use the distribution of recent targets to estimate the probability 

distribution of a new target T. For simplicity, we assume that participants only consider linear 

distributions over the range of target numbers, i.e., a set of distributions of the form  

�(/|l) = �
OPQRSTP$

]1 + l O�m>?O
m?��m>?Oa with K#,/ =  m?��mnO

� , where min and max are 

respectively the minimum and the maximum of the range of target numbers. This equation 

describes a linear probability distribution over the numerical interval [min, max]. l ∈ p−1,1q is 

a hyperparameter that governs the relative emphasis of small numbers over large numbers: 

l = −1 indicates that participants expect a majority of small numbers, l = 0 a flat distribution, 

and l = +1 a majority of large numbers. 

We assume that the participants’ expectations about the target numbers changes as a function 

of the recent target numbers they received. This is achieved by constantly maintaining an 
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internal distribution of the possible values of l. At the beginning of the experiment, this 

distribution is flat over the interval [-1, 1]: all values of l are equiprobable. At the end of each 

trial, based on the target they just received, subjects revise their posterior distribution of λ. We 

denote this revised distribution by p(λi)  (this is the estimate at the end of trial i, after taking into 

account the target Ti, and therefore serving as a prior for trial i+1). At this time, we assume that 

the participants have precisely identified the trial’s target number Ti, so they can use it to revise 

their previous distribution p(λi-1). According to Bayes’ rule, this update should be: 

�(ln|��:n) ∝ �(ln��|��:n��) �(�n|ln)              [12] 

This optimal equation, however, would simply imply that subjects accumulate perfect 

evidence about the distribution of targets, without any forgetting, in which case they would 

quickly converge to a distribution centered on the correct value λ=0 (unbiased distribution of 

target numbers). The evidence, however, indicates a strong effect of recent trials, which suggests 

the existence of local expectations (e.g., after a streak of large numbers, subjects expect to see 

more large numbers). We model this as forgetting in the updating process. Formally, as in 

previous work (Behrens, Woolrich, Walton, & Rushworth, 2007; Meyniel, Schlunegger, & 

Dehaene, 2015), we assume that there is a probability k3 that the participants carry the current 

posterior estimates p(λi-1) onto the next trial, and a probability of 1-k3 that they revert to a flat 

prior. In other words, k3 controls the relative weight of the prior expectation relative to the 

incoming evidence at a given trial: 7
 = 1 means no forgetting (optimal Bayesian integration), 

and 0 ≤ 7
 < 1 mean underweighting of the prior information and, correspondingly, a stronger 

effect of the last target on the estimation of λ. 

The value of λi can now be calculated by applying Bayes rule: 

�(ln|��:n , 7
) ∝ �(ln , ��:n��, /n|7
)�(��:n)  [13] 

∝ Z �(ln��, ln , ��:n��, �n|7
)[ln��
��

��   [14] 

∝ Z �(��:n��|7
)�(ln��|��:n��, 7
)�(ln|ln��, ��:n��, 7
)�(�n|ln��, ln , ��:n��, 7
)[ln��
��

��   [15] 

∝ Z �(ln��|��:n��, 7
)�(ln|ln��, 7
)�(�n|ln)[ln��
��

��   [16] 

In [14], we removed the constant term �(��:n) and marginalized over λi-1. In [15], we applied 

the chain rule. In [16], we removed the constant term �(��:n��|7
) and simplified the other 

probabilities by considering that some terms are independent of each other. In the resulting 

expression [16], the term �(ln��|��:n��, 7
) reflects the prior; the term �(ln|ln��, 7
) – the 
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forgetting factor; and the term �(�n|ln) – the probability that the present trial target would indeed 

be Ti given a certain λ value. 

Once we know the distribution �(ln), we can marginalize over li to obtain the prior 

probabilities for target number of the next trial: 

�(/n��|/�:n) = Z �(/n��|ln)�(ln)��
��  [ln     [17] 

Intuitively, the effect of those equations is that after receiving, say, a large number such as 

40, participants infer that the estimated likelihood of being in an experiment with a large l is 

high, and therefore they expect to receive other large target numbers on subsequent trials. As a 

consequence, even in an unbiased experiment where all targets are presented equally frequently, 

participants will be biased to point towards recently presented targets. 

Simulations. Fig. 3.12c-f shows simulations of movement time, movement trajectory and 

regressor estimates. It can be seen that the model provides a reasonable qualitative fit for most 

of the experimentally observed effects (here and in Chapter 2). The horizontal movement onset 

is an asymmetrical function of target size, with faster responses for small numbers than for large 

numbers (Fig. 3.12c). As a result, simulated finger trajectories depart from the center faster for 

smaller numbers than for larger number (Fig. 3.12d). Consequently, regression analyses exhibit 

a transient log effect followed by a sustained linear effect (Fig. 3.12e). This effect disappears 

when regression is locked on the horizontal movement onset. Finally, an effect of previous 

targets is observed on the initial part of the movement, with approximately exponential decay 

over the past trials (Fig. 3.12f). 

The model may also account for two additional subtle features of the data: the influence of 

the spatial reference points (SRP) equation, and the fact that the regression weight of the log 

function becomes negative late in the trial. Both effects arise because the model only considers 

hypotheses in the range [0,40], thus truncating the posterior distribution to this range and 

shifting the responses away from the endpoints 0 and 40 and towards the center of the number 

line (a regression to the mean typical of Bayesian models, see e.g. Fischer & Whitney, 2014; 

Jazayeri & Shadlen, 2010). The reference point effect captures this small displacement, while 

the negative log captures a slight asymmetry of this effect due to differential variability for small 

and large numbers. In actual data, the reference point effect is larger, seemingly because of an 

additional repulsion of responses away from the line midpoint 20, which is not captured by the 

current model (but might be if one assumed an additional process of comparing the target to the 

midpoint). 
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The simulations in Fig. 3.12 were obtained with 7� = 0.7, 7� = 20.0,   7
 = 0.7, 
 u = 0.15, with a delay of w?FFGH� =  w>�?@� = 350 K� for the onset of samples arising from 

the exact and approximate representations, and with the assumption of calculation iteration 

every 1 ms. Because the model remains coarse and unspecified, especially as concerns 

movement programming, we did not attempt a quantitative fit of the data, but we did observe 

that the above effects are generic across a larger range of parameters. Scalar and compressive 

representations of approximate number give virtually identical results. Importantly, having only 

an exact linear representation cannot account for the results: simulating it leads to a 

disappearance of the transient log effect. Conversely, however, it is possible to account for the 

results with a single approximate representation – there is a range of parameters (e.g., 7� = 0.7,
7
 = 0.7, u = 0.12, w?FFGH� = 350 K�) for which the movement onset is delayed for large 

numbers, resulting in a transient log, and yet the internal distribution at the time of movement 

is precise enough to yield near-linear pointing. The only quantitative inadequacy of this 

approximate-only model is that the weight of the linear regressor never converges to 1, i.e. the 

final pointing remains sublinear. The fact that the linear weight does converge to 1 in adult data 

(Fig. 3.2, 3.6, 3.9b) thus confirms that adults are supplementing their approximate representation 

with a linear understanding of exact number. 

Both the single (approximate) and the dual-representation models can also account for the 

children’s data by lowering the posterior threshold θ required for making a decision. Lower 

threshold leads to an earlier decision to move. In this earlier time point, less evidence was 

accumulated, so the decision about a target location is based on a more approximate 

representation, thus magnifying the difference between small and large numbers. This results in 

a more logarithmic mapping (Fig. 3.13, created by lowering the threshold θ from 0.15 to 0.07), 

which bears much similarity to the children data in Fig. 3.10a-b. Finally, the effect of dual-task 

interference may be simulated in several ways, either by differing the onset of the exact 

representation relative to the approximate representation, or by assuming that, during dual-task 

interference, both representations suffer from additional noise, such that the rate of evidence 

accumulation is lower. Further research will be needed to disentangle these possibilities. 
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Fig. 3.13. Simulation of children data. (a) Median trajectories. (b) Regression b values. 

One aspect that is not captured very accurately by this model is the shape of the distance 

effect for the movement onset time: the real data show a clear dependency on distance from the 

mid-point (Fig. 3.4, Fig. 3.11d), which is absent in the simulated data (Fig. 3.12c). This finding 

suggests that the model’s simple decision mechanism (a fixed threshold on posterior probability, 

inspired by Gold & Shadlen, 2001) may have to be replaced by a more complex mechanism of 

comparison between the new aim (point to the target) and the initial aim (point to the midpoint), 

as indeed suggested by recent studies of motor programming (Fishbach et al., 2007) and error 

correction (Charles et al., 2014). Such refinements, however, add much complexity to the model 

and are therefore better left for future research. 

3.7.3. Conclusion of Chapter 3 

Performance of the number-to-position task, as studied in the present experiments with adult 

participants, is entirely compatible with a strictly sequential processing model that combines a 

quantification stage (using both exact and approximate representations), an optimal decision-

making stage, and a movement stage that minimizes pointing errors. Our main empirical finding 

is that in adults, these stages appear to be separable: once the variable duration of the decision 

stage is controlled for (by aligning trajectories on the horizontal movement onset times), the 

finger trajectories show virtually no logarithmic effect, but only linear pointing. Many other 

details are captured by the optimal decision making model.  

While this model nicely accounts for the performance of healthy adult participants, an 

examination of the performance of the aphasic patient ZN and of 4th grade children indicated 

that this model cannot be the whole story. The logarithmic effect in these experiments cannot 

be solely explained by differential durations of a decision stage, as a logarithmic effect 

continued to be found long after the horizontal movement onset. We saw that two classes of 

explanations can be proposed: either those subjects genuinely fail at the conceptual level, i.e., 
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they simply do not understand that the task calls for linear pointing (Booth & Siegler, 2006; 

Dehaene et al., 2008; Siegler & Booth, 2004; Siegler & Opfer, 2003); or they attempt to point 

linearly (as our model does), but their decision-to-move is based on partial evidence which is 

coarser for large than for small numbers. More research will be needed to separate those 

possibilities. 
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4. Parallel and serial processes in number-to-quantity 

conversion 

Abstract. Converting a multi-digit number to quantity requires processing not only the digits but also 

the number’s decimal structure. We investigated this structural processing: first, we asked whether 

the digits are processed serially or in parallel. Second, given that the same digit represents different 

quantities when in different decimal roles (e.g., “2” can mean 2, 20, etc.), we asked how digits are 

assigned decimal roles. To answer these questions, we used the number-to-position task with finger 

trajectory tracking. Crucially, the decade and unit digits could appear with a lag. When the decade digit 

was delayed, the decade effect on finger movement was delayed by the same amount. However, a lag 

in the unit digit delayed the unit effect by 35 ms less than the lag duration, a pattern reminiscent of 

the psychological refractory period, indicating an idle time window of 35 ms in the units processing 

pathway. When a lag transiently caused a display of just one digit on screen, the unit effect increased 

and the decade effect decreased, suggesting errors in binding digits to decimal roles. We propose that 

a serial bottleneck is imposed by the creation of a syntactic frame for the multidigit number, a process 

launched by the leftmost digit. All other stages, including the binding of digits to decimal roles, 

quantification, and merging them into a whole-number quantity, appear to operate in parallel across 

digits, suggesting a remarkable degree of parallelism in expert readers. 

4.1. Introduction 

How do we combine the digits of a multi-digit number into a single quantity? In the visual 

system, the digits in a number such as “22” appear at distinct retinotopic locations and must 

therefore be processed independently; yet at some point they must be weighted according to 

their position in the overall number. The very same symbol, say 2, changes its meaning 

depending on its decimal role – e.g., it may mean two units (e.g. in “32”) or twenty units (in 

“23”). The number recognition process must therefore be broken into several operations:  

(1) Visual parsing and identification of each digit and their relative positions.  

(2) Binding each digit to a decimal role – units, decades, etc. (3) Quantifying each digit, i.e., 

multiplying the digit value by the weight implied by its decimal role, and merging these 

quantities. (4) Using the resulting quantity in whichever task is required. In the number-to-

position task, the quantity is converted into a manual movement towards the appropriate location 

on the number line. 

The study described in this chapter focuses on the 2nd and 3rd operations in this list: we aimed 

to understand how the digits of a multi-digit number are bound to decimal roles and quantified. 

We examined these issues using the number-to-position mapping task. In the previous chapters, 

experiments with two-digit numbers found that the effects of the decade and unit digits on finger 
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movement were in a 10:1 ratio and that their buildup was nearly simultaneous. Consequently, 

we suggested that the decade and unit digits were quantified simultaneously. In fact, however, 

several cognitive architectures may underlie this finding. One possibility (termed the lexical 

model) is that the entire two-digit string is recognized holistically, similar to the lexical route 

for the visual recognition of known words (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; 

Ellis & Young, 1996; Friedmann & Coltheart, in press). This would require that all numbers 

and their corresponding quantities be lexically stored (see Cohen, Dehaene, & Verstichel, 1994 

for counter-evidence). Alternatively, each digit may be quantified independently and 

simultaneously, and the per-digit quantities would affect the finger movement in parallel 

(parallel-decomposed model). Last, any serial processing of the digits may be undetectable by 

the finger-tracking paradigm if the finger deviates towards a specific target location only after 

the decade and unit quantities were fully processed and merged (max model). According to this 

model, the finger deviation time would reflect the maximum of the processing times of the 

individual digits, irrespective of the order in which they are processed. 

To evaluate these possibilities, we asked participants to perform the trajectory-tracked 

number-to-position task with two-digit numbers. Crucially, we systematically varied the 

temporal order and delay separating the onsets of the decade and unit digits: on some trials the 

decades appeared shortly before the units, or vice-versa. This method allows examining the 

temporal dependencies that link the two digits. If all four operations described above (parsing, 

binding to decimal role, quantification, movement) unfold independently and in parallel for each 

digit, delaying a digit by a delay Δt should delay the effect of this digit on finger movement by 

the same Δt, but it should not delay the effect of the other digit on finger movement. Conversely, 

if there is full dependency between the digits – either because all digits are needed to recognize 

the whole number as a word, or because the decision to move the finger depends on the 

availability of all digits – then delaying either digit by Δt would delay the effects of both digits 

on the finger movement by Δt. Note that the between-digit dependency does not have to be 

symmetric: for example, it is possible that the processing of the unit digit depends on the decade 

digit but not vice versa (such would be the case if we assume purely sequential processing – 

first the decade digit, then the unit digit). 

Delaying the onset of a digit might also perturb the binding of digits to decimal roles. If the 

decade digit transiently appears alone on screen, it might be incorrectly quantified as a single-

digit number. Conversely, a stand-alone unit digit might be interpreted as the decade of a two-
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digit number. To reduce the likelihood that visual confusions would cause such binding error, 

the digits always appeared in predictable locations on screen, and when delaying the onset of a 

digit, its position was temporarily occupied by a placeholder character (i.e., only two-character 

strings were always displayed). 

4.2. General method 

4.2.1. Participants 

All participants were right-handed adults with no reported cognitive disorders, and were 

compensated for participation. Their mother tongue was Hebrew, in which words are written 

from right to left but numbers are written like in English. Hebrew and left-to-right readers were 

found to exhibit similar patterns of results in our paradigm (see Chapter 2). 

4.2.2. Procedure 

The general procedure followed the one described in Chapter 2. The crucial difference was 

that here, the digits of a two-digit number did not always appear simultaneously. The fixation 

stimulus was changed accordingly, as detailed below. 

4.2.3. Statistical analysis 

4.2.3.1. Factors affecting the finger movement 

We analyzed finger trajectories using the method introduced in Chapter 2. One regression 

was run per participant and per time point in 50 ms intervals. Implied endpoints were regressed 

against the decade (0, 10, 20, …, denoted D), the unit digit (U), the target of the previous trial 

(N-1), and a bias function (SRP, equation [1]). SRP may reflect a spatial aiming strategy that 

relies on the middle and ends of the number line (Barth & Paladino, 2011; Rouder & Geary, 

2014; Slusser, Santiago, & Barth, 2013; Section 2.3.2.6). 

To examine whether a given predictor had a significant group-level effect per time point, 

the participants’ regression b values (significant and non-significant) were compared with zero 

using t-test (one-tailed p is reported). 

In the previous chapters, we used a logarithmic predictor to account for potential logarithmic 

quantity representation. The log predictor was not used here, because in Chapter 3 we showed 

that it captures a temporal bias rather than logarithmic representation, but including it yielded 

essentially the same results. 



Chapter 4. Parallel and serial processes in number-to-quantity conversion 

 98

4.2.3.2. Comparing the decade and unit effects between conditions 

To assess how delaying the decade or unit digits modulates their effect on finger movement, 

we compared the decade and unit regression coefficients (b[U] and b[D]) between conditions 

with different onset times of the digits. To estimate the difference in the timing of an effect 

between two conditions, we calculated delay between the regression curves of that effect – i.e., 

the Δt that minimized the sum of squared differences between the curves: 
min

y� Z(z@HO��(A) − z@HO��(A − {A))�[A. This integral was computed on the average b values 

over participants, and restricted to the time window in which the regression curve was on rise 

(which was always in the range 350-650 ms), because these time windows were the most 

informative. To approximate the integral, the regressions were run in 10-ms intervals and the b 

values were interpolated to 1-ms granularity with cubic spline interpolation. 

To assess the significance of the difference between conditions, we compared the per-

participant b values between the two conditions on each time point using paired t-test (one-tailed 

p). This analysis too was restricted to the time window in which the regression curve was on the 

rise.  

4.2.3.3. Assessment of binding errors using changes of mind 

Binding errors cause the decade digit to be sometimes interpreted as the unit digit or vice 

versa. We assumed that binding errors are often corrected later in the trial, resulting in a change 

in the finger direction. To measure such changes of mind, we calculated the finger horizontal 

acceleration by deriving the x coordinates twice (with Gaussian smoothing before each 

derivation, σ = 20 ms). We then counted, per trial, the number of “x acceleration bursts” – 

trajectory sections with acceleration ≥ 2.38 mm/s during at least 70 ms (Dotan, Meyniel, & 

Dehaene, 2017). Each acceleration burst potentially reflects a change of mind. 

4.2.3.4. ANOVA 

The speed of performing the number-to-position task varied a lot between participants. Our 

goal in the present study was not to explain these inter-individual differences, but to focus on 

the within-participant factors that affect people's behavior in the number-to-position task. For 

this reason, in all ANOVA's in this study – most of which concern reaction times – we use 

repeated measures design and report effect sizes as partial η2, a measure independent of the 

between-participant variance. For standardization we also report η2 for one-way ANOVAs, and 
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generalized η2 (Bakeman, 2005; Olejnik & Algina, 2003), denoted ηG
2, for ANOVA with 

several factors. 

4.3. Experiment 4.1: Delaying the unit digit 

In this experiment, the decade digit always appeared at t = 0 and the unit digit appeared 

either simultaneously or after a short delay. If the unit digit is processed independently of the 

decade digit, any delay in the unit digit onset should be fully reflected in its effect on the finger 

movement. 

 
Fig. 4.1. Experiment 4.1 task design: the fixation was XX. At t=0, the decade digit appeared and the unit 

position was occupied by a ‘0’ or ‘#’ character (in two separate blocks). The placeholder character was 

replaced by the unit digit after 0, 33, 67, 100, 133, or 167 ms. The ‘0’ placeholder makes the transient 

stimulus a valid two-digit number, and was aimed to reduce errors in binding of digits to their decimal 

roles. 

To discourage the binding of digits to incorrect decimal roles, the position of the delayed 

unit digit was temporarily occupied by a ‘0’ placeholder character (Fig. 4.1, “D0” block) – e.g., 

the target number 25 appeared as 20 and then changed to 25. With a ‘0’ placeholder, the transient 

stimulus (20) is a valid two-digit number; we hoped this would facilitate the processing of the 

displayed decade digit as part of a two-digit number (rather than as a single-digit number), and 

thus discourage binding to incorrect decimal roles. However, a possible disadvantage of the ‘0’ 

placeholder is that, being an acceptable digit, the ‘0’ may undergo the full processing pathway 

on top of the target unit digit or instead of it. As a result, finger movement would reflect a 

mixture of the target unit digit and the ‘0’ placeholder. Because ‘0’ is always smaller than or 

equals to the target digit, the average unit effect on finger movement would be reduced. To 

control for this possible confound, we added a second block with a non-digit placeholder 

character (D# block). The ‘#’ character should not undergo the digit processing pathway, so we 

predicted that it should not cause the unit under-representation artifact, perhaps at the cost of 
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more errors in binding digits to decimal roles. By comparing the D0 and D# blocks we could 

examine the notion of binding errors. 

4.3.1. Method 

28 right-handed adults, aged 25;10 ± 2;7, performed two blocks of the number-to-position 

task. The transient unit placeholder character was ‘0’ in one block and ‘#’ in the other. We used 

a 0-60 number line. In both blocks, the decade digit always appeared at t = 0, and the unit digit 

appeared at t = 0, 33 ms, 67 ms, 100 ms, 133 ms, or 167 ms (mixed design; Fig. 4.1). Each target 

number between 10 and 50 was presented twice per block and SOA (492 trials per block). 

The fixation indicator was uppercase XX. In the SOA=0 condition, it changed into the target 

number at t=0. In longer SOAs, the decade digit appeared at t=0, and the unit position changed 

at t=0 into ‘#’ or ‘0’, and after the SOA duration – to the target digit. Both digits disappeared 

500 ms after the unit digit onset. Note that at t=0, a visual change occurred in both decimal 

positions, in order to minimize the between-digits differences in attentional or spatial bias. 

The finger trajectory data of each SOA condition was separately submitted to the two-stage 

analysis and analyzed for between-condition delays as described in General Method. As we 

shall see below, in the D0 block b[U] did not converge to the same value in all SOA conditions, 

so the delay estimations were not based on the raw b values but on the ratio between b[U] and 

its endpoint value. 

4.3.2. Results 

4.3.2.1. General analyses 

The trial-level measures and the trajectory regressions showed the pattern typical to our 

paradigm (Table 4.1). In both blocks, in the SOA=0 condition (Fig. 4.2a,b) the decade and unit 

effects almost overlapped, with a small over-weighting of b[U] relative to b[D] during a 

transient time window, similarly to the findings in Chapter 2. 
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Table 4.1. Trial-level measures and regression patterns. In all experiments, the regression effects 
showed the pattern typical to this paradigm (as described in the previous chapters): dominant effect 
of the target number (both digits), significant effect of the previous trial in the early trajectory parts, 
and a spatial-reference-points bias (SRP) effect in the late trajectory parts. 

Experiment Exp. 4.1, D# Exp. 4.1, D0 Exp. 4.2 Exp. 4.3   

Failed trials (%) 5.4 (4.5) 4.6 (3.5) 2.8 (2.6) 4.3 (3.5)   

Movement time (ms) 1012 (161) 980 (137) 1036 (177) 1272 (186)   

Endpoint bias a -0.73 (0.88) -0.75 (0.8) -1.36 (0.87) -5.81 (4.71)   

Endpoint error a 2.89 (0.84) 2.83 (0.81) 4.68 (1.17) 23.8 (7.58)   

b[N-1]       

 Peak value 0.20-0.22 0.23-0.26 0.20-0.21 .19   

 Peak time point 350-400 350-400 350-400 500   

 b > 0.05 until (ms) 600-700 650-750 600-700 850   

b[SRP]       

 Significant from 
(ms) 450-600 450-550 450-500 

500 
 

 

 Endpoint value 0.29-0.32 0.27-0.31 0.29-0.30 .39   

Endpoint b[U]/b[D] 1.01-1.06 0.87-1.03 0.85-0.91 0.92 b   
a Endpoint bias and error use each Experiment’s number line scale (0-60, 0-100, or 0-400) 
b The ratio shown for Experiment 4.3 is b[D]/b[H] 

4.3.2.2. Partial processing of the 0 placeholder 

In the D0 block, the regression analyses showed that the unit effect b[U] converged to 

gradually lower endpoint values as the SOA increased (Fig. 4.2c). This suggests that, as we 

predicted, the ‘0’ placeholder character was partially processed as the target unit digit, and that 

the degree of this partial processing depended on the duration of presenting the ‘0’ placeholder. 

This effect was confirmed by a repeated measures ANOVA on b[U](endpoint) with SOA as a 

within-subject numeric factor (F(1,27) = 13.6, p < .001, η2
P = .34, η2

G = .09). No such linear 

trend was found in the D# control block (F(1,27) < 0.2). The difference between the blocks was 

demonstrated using a two-way repeated measures ANOVA on b[U](endpoint), with SOA as a 

within-subject numeric factor and the block (D# or D0) as a between-subject factor: the SOA x 

Block interaction was significant (F(1, 27) = 7.83, p = .01, η2
P = .22. η2

G = .02). 
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Fig. 4.2. Time course of the effects in Experiment 4.1. This and subsequent plots show the b values of 

the regressions (one regression per time point, participant, and condition) on implied endpoints. The b 

values were averaged over participants, plotted as a function of time, and compared to zero with t-test 

(full dot = significant). (a,b) Time course of the effects in the SOA=0 condition (simultaneous 

presentation of the two digits). The decade and unit effects rise together in almost 10:1 ratio, with a 

small over-weighting of the units. (c,d) Time course of b[U], the unit regression effect, in all SOA 

conditions. (c) b[U] showed an IDLE pattern in the D0 block: delaying the unit digit by 33 ms had little 

effect on b[U], whereas longer delays caused  a linearly-increasing delay of b[U]. (d) In the D# block, 

b[U] did not show the IDLE pattern. (e,f) Increasing the SOA created a small decrease/delay in the 

decade effect in the D# block but not in the D0 block. 
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4.3.2.3. D0 block: the effect of delaying the unit digit 

If the unit digit is processed independently of the decade digit, delaying the unit digit onset 

(extending the SOA) should delay the unit effect on finger movement (b[U]) by the same 

amount. Fig. 4.2c clearly shows that this was not the case: the shortest SOA (33 ms) had no 

impact on b[U]; only extending the decade-unit SOA beyond 33 ms created an increasingly 

larger delay in b[U]. The b[U] delay, calculated as described in Methods, showed this pattern 

very clearly (red line in Fig. 4.3). To quantify the increase in the delay, we regressed the b[U] 

delay by SOA (only SOA > 0 were included). The regression slope (dashed line in Fig. 4.3) was 

1.11 – i.e., beyond SOA = 33 ms, extending the SOA by a certain amount delayed b[U] by a 

similar amount. 

 
Fig. 4.3. Experiment 4.1: the delay in the unit effect on finger movement between SOA=0 and each 

other SOA. The lowest SOA (33 ms) had no effect on b[U], and extending the SOA beyond that created 

a linearly increasing delay (IDLE pattern). The dashed lines are regressions of the b[U] delay against SOA 

(SOA=0 excluded). In the D0 block, this regression has a slope that approached 1.0 and it crosses the x 

axis at SOA=35 ms, i.e., extending the SOA beyond 35 ms delayed the unit effect by SOA - 35 ms. 

One explanation for this pattern is that the unit quantity was not processed as soon as it 

appears, but only after a short interval. This interval is an idle time window in the units 

processing pathway. Small delays in the onset of the unit digit would be fully absorbed in this 

idle time window and have no impact on finger movement, and larger delays would be partially 

absorbed. The duration of the idle time window in the units processing pathway can be estimated 

as the smallest SOA that would create a delay in the unit quantification and consequently in 

b[U]. We estimated this value as 35 ms, the SOA for which the delay-per-SOA regression 

predicts delay = 0 (Fig. 4.3). This pattern of results – b[U] delay that increases linearly with 

SOA, starting from a certain SOA – is hereby referred to as the “Idle Digit Latency Effect” 

pattern (or IDLE pattern in short). 



Chapter 4. Parallel and serial processes in number-to-quantity conversion 

 104

4.3.2.4. D# block: No IDLE pattern in the unit effect 

The results in the control block did not show an IDLE pattern: the b[U] delay increased more 

or less linearly with SOA except a slight deviation on SOA = 133 ms (Fig. 4.2d and the blue 

line in Fig. 4.3). The slope of the b[U] delay per SOA was 0.71 (Fig. 4.3), i.e., the SOA was not 

fully reflected in the finger movement. Alternatively, it is possible that the SOA was fully 

reflected in finger movement, but another factor partially canceled this effect – either by 

quickening the b[U] effect or by increasing it (in our regression analysis method, earlier/higher 

effects are virtually indistinguishable). We propose that this other factor is errors in binding the 

digits to their decimal roles, as explained next. 

4.3.2.5. Errors in binding digits to decimal roles 

If a digit is bound to an incorrect decimal role, this may appear in our task as a bias in the 

digit effect on finger movement: if a unit digit is bound to the decade role, it would be processed 

with 10 times its real quantity. Conversely, if a decade is bound to the unit role, it would be 

processed with ⅒ times its quantity. Extending the period during which the decade digit 

appeared alone on screen may increase the likelihood that the decade digit would be incorrectly 

bound to the units decimal role. This should be the case when increasing the SOA in the D# 

block (but not in the D0 block). We used two methods to examine this prediction. 

The first method was based on the regressions. If longer SOA means more binding errors, 

and binding errors result in a lower decade effect b[D], then b[D] should continuously decrease 

with SOA in the D# block. Assuming that many binding errors are transient and are eventually 

corrected, this SOA-b[D] effect should be observed in a relatively early time window. This was 

indeed the case: we analyzed b[D] by SOA in each time point using repeated measures ANOVA, 

with b[D] as the dependent variable, SOA as a numeric within-subject factor, and the participant 

as the random factor. A continuous decrease of b[D] by SOA in an early time window was 

observed in the D# block, during b[D] buildup (400-750 ms, F(1,27) > 5.64, p < .03,  

.17 < η2
P < .65, .02 < η2

G ≤ .10; Fig. 4.2f). This pattern was not found in the D0 block in any 

time point (Fig. 4.2e, F(1,27) < 2.3, p > .14; Fig. 4.2e). 

Another method to assess binding errors is based on identifying potential changes of mind. 

We reasoned that the finger direction is dominated by the decade digit, so a transient binding 

error may appear as a change in finger direction, because the finger would first aim according 

to the unit digit, erroneously perceived as the decade, and then correct its direction to the decade 

digit. An experimental condition with more binding errors would therefore show more within-
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trial direction changes. We indexed these direction changes as the number of left-right 

accelerations per trial (see Methods). To maximize sensitivity, we analyzed only trials with large 

gap between the two digits (|D-U| ≥ 5). We predicted that larger SOA’s would yield more within-

trial accelerations. This prediction was confirmed: the number of acceleration bursts (#Acc) 

increased linearly with SOA (repeated measures ANOVA with SOA as a within-participant 

numeric factor, F(1,27) = 7.3, p = .01, η2
p = 0.21, η2

G = 0.01). Moreover, in each SOA except 

100 ms, #Acc was larger than in SOA=0: paired t-test, t(27) ≥ 2.4, one-tailed p ≤ .01, 0.45 < 

Cohen’s d < 0.65 (in SOA=100: t(27) = 1.25, one-tailed p = .11). Neither these patterns was 

observed in the D0 block, F < 1 and t(27) ≤ 0.8. 

These results indicate that when the placeholder character was ‘#’, the decade digit was 

sometimes bound to the unit role, and that longer SOAs increased the probability of such an 

erroneous binding. Using the ‘0’ character as placeholder largely eliminated these binding 

errors. 

4.3.3. Discussion of Experiment 4.1 

Experiment 4.1 presented two-digit numbers in which the unit digit was delayed by a 

variable amount. In the critical block (D0), where the transient stimulus was always a valid two-

digit number, a clear IDLE pattern was observed: a short delay in the unit digit onset (33 ms) 

did not delay the unit effect on finger movement, whereas longer delays caused a linearly-

increasing delay in the unit effect. This pattern suggests the existence of an idle time period in 

the units processing pathway, during which the unit digit is not yet needed, so its absence has 

no impact on the number-to-quantity conversion process. Small delays in the onset of the unit 

digit (SOA ≤ Tidle, where Tidle denotes the idle time window duration) are fully absorbed in this 

idle time window, so they have no effect on the finger movement. Larger delays (SOA > Tidle) 

are partially absorbed, so the unit effect on finger movement is delayed by SOA - Tidle. The 

results of Experiment 4.1 suggest that Tidle ≈ 35 ms. 

This idle time window resembles the classical psychological refactory period effect (PRP) 

(Pashler, 1984, 1994; Sigman & Dehaene, 2005), in which the processing of task A is delayed 

until the processing of a simultaneous task B is completed. In our case, the unit processing may 

wait for the completion of a process triggered by the decade digit: the process is a bottleneck, 

and until completed, the unit processing cannot continue and must wait, hence the idle time 

window. While PRP effects typically suggest serial processing, note that our findings are also 

quite unlike the classical PRP effects in a specific respect: here, in the baseline condition 
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(SOA=0) where all information appears simultaneously, the decade and unit effects did not have 

a sequential impact on finger movement, but a parallel impact. We revisit this issue in 

Experiment 4.3. 

Another finding was that the decade effect b[D] decreased with SOA in the D# block. This 

pattern suggests that the decades and units were sometimes confused, so that decades were 

processed as units (and perhaps also vice versa). One reason for this to occur could be that the 

digits were sometimes bound to an incorrect decimal role. The likelihood of these binding errors 

was increased by displaying the decade digit alone on screen for increasing durations, and they 

were nearly eliminated when only valid two-digit numbers were presented (as in the D0 block).  

4.4. Experiment 4.2: Delaying decades or units 

A possible concern about Experiment 4.1 is that it does not reflect the normal functioning 

of the cognitive system: the IDLE pattern may result from the experimental design, in which the 

unit digit was often delayed but the decade digit was never delayed. This design could have 

encouraged serial processing of the decade digit followed by the unit digit. Thus, the observed 

idle time window in the units processing pathway might be an artifact of the design. To control 

for such artifacts, Experiment 4.2 delayed either the decades or units with equal probabilities. 

This symmetric design also allowed examining whether delaying the decade digit onset would 

delay its effect on finger movement, similarly to the corresponding effect we observed for units. 

4.4.1. Method 

The participants were 20 adults, aged 26;9 ± 4;5. The design was as in Experiment 4.1, but 

with different onset times of the digits: each digit could appear either at t=0 or at t=100 ms (2x2 

mixed design: a no-delay condition, where both digits appeared at t=0, delay decade, delay unit, 

and delay both digits). Tach target number between 10 and 90 appeared twice per condition (648 

trials). Like in Experiment 4.1, both X characters changed when the finger started moving  

(t = 0). In the no-delay condition, they changed immediately to the target (Fig. 4.4a). In the 

delay-decade and delay-unit conditions, at t=0 only the decade or the unit digits appeared; the 

other digit changed at t=0 into a lowercase ‘x’ placeholder, and after 100 ms to the target. In the 

delay-both condition, the fixation changed to ‘xx’ at t=0, and after 100 ms to the target. The ‘0’ 

placeholder was not used here because, unlike Experiment 4.1, it would have created an invalid 

two-digit number when the unit digit was displayed first. 
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The trajectory data was analyzed per condition using the two-stage regression analysis 

described in methods, with the SRP predictor modified to match the 0-100 number line length. 

4.4.2. Results 

Trial-level measures and the general pattern of trajectory effects are listed in Table 4.1. In 

the no-delay condition (Fig. 4.4b), the decade and unit effects were similar but there was a small 

but significant over-weighting of b[U] relative to b[D] in a transient time window – again 

imputable to erroneous binding of digits to decimal roles. 

To examine whether the decade quantification depends on unit quantification and vice versa, 

the regression coefficients of each digit were compared between the four experimental 

conditions (Fig. 4.4c-d). We hereby describe the results with respect to each digit. 

 
Fig. 4.4. Experiment 4.2. (a) Task design: 4 mixed conditions. The fixation was ‘XX’. At t=0, each ‘X’ 

changed either immediately to the target digit, or to a lowercase ‘x’ and after 100 ms to the target digit. 

(b) When neither the decade digit nor the unit digit are delayed, their effects build up together and in 

almost 10:1 ratio, with slight over-weighting of the unit digit. (c) The decade effect depended solely on 

the decade digit onset time, and was almost unaffected by delaying the unit digit. (d) Delaying the unit 

onset by 100 ms (no-delay vs. delay-unit) delayed its effect by only ~65 ms (IDLE pattern). Presenting 

the unit digit before the decade digit (delay-decade) resulted in an exaggerated unit effect. 
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4.4.2.1. Decade quantification 

If the decade quantity is processed independently of the unit quantity, its effect on finger 

movement should depend solely on the decade onset time. This was indeed the case (Fig. 4.4c). 

Delaying the decade digit onset by 100 ms caused a significant delay of about 100 ms in b[D] 

(no-delay vs. delay-decade and  delay-unit vs. delay-both in Table 4.2). Conversely, delaying 

the unit digit onset by 100 ms only had a minor effect on the decade effect (no-delay vs. delay-

unit and delay-decade vs. delay-both in Table 4.2). Thus, the decade digit was quantified and 

caused a corresponding finger movement as soon as it appeared, almost independently of the 

unit onset time. 
Table 4.2. Comparison of regressions effects between condition pairs in Experiment 4.2. The 
decade effect was coupled with the decade digit onset time, and was hardly affected by the 
unit onset. The unit effect showed the IDLE pattern (effect delayed by less than the lag in the 
digit onset). 

  Delay between 
conditions (ms) 

 Significant differences between regression lines 

Comparisona   When (ms) t(19) 1-tail p Cohen’s d 

b[D] 

none vs. decade 
 

104  350 
400-700 

1.96 
> 2.9 

.03 
< .004 

.02 
0.67 - 3.06 

unit vs. both  80  350-700 ≥ 2.5 ≤ .01 0.57 - 2.46 

none vs. unit  18  450-700 ≥ 2.1 < .03 0.47 - 1.48 

decade vs. both  -8      

none vs. both  95  350-700 > 2.6 < .01 0.01 - 0.33 

b[U]       

none vs. unit  65  400-550 ≥ 1.9 < .04 0.43 - 0.96 

none vs. both  50  450-500 ≥ 2.3 < .02 0.04 - 0.21 
a Condition names: “none” = both digits appeared at t=0; “decade”, “unit”, and “both” 

denote delay of the corresponding digit/s. 

4.4.2.2. Unit quantification 

Experiment 4.1 showed an IDLE pattern in the unit effect following a delay in the unit digit 

onset: 35 ms of the delay were absorbed in a putative idle time window, and only additional 

delay was observed in finger movement. This pattern was replicated here: comparing no-delay 

and delay-unit (blue lines in Fig. 4.4d) showed that delaying the unit onset by 100 ms delayed 

its effect b[U] on finger movement, and the size of this delay (65 ms, Table 4.2) was smaller 

than the visual stimulus delay by 35 ms – an exact replication of the two equivalent conditions 

in Experiment 4.1 (SOA = 0, 100) and of the estimated idle time window duration (35 ms). 
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Presenting the unit digit before the decade digit resulted in an unexpected pattern of results: 

extremely high b[U] values. The b[U] difference between no-delay and delay-decade cannot be 

explained as a mere delay – the peak b[U] value was higher in delay-decade (peak b[U] = 1.37 

at 550 ms) than in no-delay (peak b[U] = 0.93 at 700 ms, paired t(19) = 2.35, two-tailed p = .03, 

Cohen’s d = 1.79). Namely, what we see in the delay-decade condition is not a delay of the unit 

effect but an exaggerated increase in the unit effect. A similar but smaller effect was observed 

when both digits were delayed by 100 ms: the unit effect in the delay-both condition was not 

delayed by 100 ms compared to no-delay as expected, but only by 50 ms. This lower-than-

expected delay can be interpreted as an exaggerated b[U] in the delay-both condition, which 

appears in the delay analysis as an earlier b[U] effect (because an earlier and a higher regression 

effect are indistinguishable in our regression analyses). The lower-than-expected b[U] delay 

cannot be interpreted as faster-than-expected processing of the full two-digit number in the 

delay-both condition, because the b[D] delay was ~100 ms, as expected.  

We explain the exaggerated b[U] effect in the delay-decade and delay-both conditions is in 

terms of digit binding errors: presumably, delaying the decade digit induced errors in binding 

digit to decimal roles, thereby amplifying the weight of the unit digit. The effect was the 

strongest when only the decade digit was delayed, i.e., when the unit digit transiently appeared 

alone on screen, which may have facilitated processing it as a decade digit. 

4.4.3. Discussion of Experiment 4.2 

The main findings of Experiment 4.1 were replicated: first, when the two digits of a two-

digit number were presented simultaneously, they influenced finger motion in a near-

synchronous manner, with some overweighting of the unit digit relative to the expected 10:1 

ratio. Second, the effect of the decade digit depended only on its presentation time, irrespectively 

of when the unit digit was displayed. Third, delaying the unit onset by 100 ms delayed its effect 

on finger movement by only 65 ms, presumably because the unit delay was partially absorbed 

in a 35 ms idle time window in the units processing pathway.  

Presenting the unit digit before the decade digit resulted in a large increase in the unit effect 

on finger movement. We interpret this b[U] increase as resulting from errors in binding the 

digits to decimal roles: presumably, when the unit digit appeared first, it was more often 

processed as if it was a decade digit and quantified 10 times its real value, causing the 

exaggerated unit effect on finger movement. A similar b[U] increase effect, but smaller, was 

observed when both digits were delayed, suggesting that this condition too induced some 
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binding errors. The decade-unit confusions may have been symmetric, i.e., it is possible that the 

decade digit was sometimes processed as a unit digit (indeed, in Experiment 4.1 we observed 

binding errors via the decade effect). However, the effect of binding errors on the decade digit 

is harder to measure, because it is 10 times smaller than their effect on the unit digit.  

4.5. Experiment 4.3: Three-digit numbers 

The IDLE pattern indicates the existence of a bottleneck process that causes an idle time 

window in the units processing pathway. What could this process be? The apparently simplest 

explanation seems to be sequential processing of the digits: if the units can only be processed 

after the decades, this would create an idle time window in the units processing pathway. If 

correct, this explanation would extend previous findings on sequential processing of digits in a 

multi-digit number: sequential effects were previously reported in number comparison and 

number reading, but only for numbers with 4 digits or more (Friedmann, Dotan, & Rahamim, 

2010; Meyerhoff et al., 2012), and in one case also for 3-digit numbers (in a number comparison 

task, Bahnmueller, Huber, Nuerk, Göbel, & Moeller, 2015). 

However, the sequential-processing view has a major flaw: it predicts that when decades 

and units are presented simultaneously, the decade effect on finger movement should precede 

the unit effect. This was not the case: in simultaneous presentation, the decade and unit effects 

consistently build up in parallel (Fig. 4.2a,b, Fig. 4.4b, and Chapters 2, 3). To explain this 

parallel pattern, the sequential-processing view could assume the existence of another factor, 

which masked the decade-unit delay: binding errors, which increase the unit effect and decrease 

the decade effect, could cause a virtual negative delay between the decade and unit effects. By 

pure coincidence, this virtual negative delay could happen to be of the same size as the decade-

unit delay, in which case the two effects would exactly cancel each other.  

Such a coincidence, replicated in so many experiments, seems unlikely. Nevertheless, to 

examine this further, we ran the task with 3-digit numbers, with simultaneous presentation of 

all digits. The coincidence interpretation, which seemed unlikely for 2-digit numbers, seems 

even more unlikely for 3-digit numbers. Thus, if the parallel effects of decades and units in the 

simultaneous-presentation condition were coincidental, we can expect the coincidence to cease 

here: the regression effects of the hundreds, decades, and units should not overlap each other. 
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4.5.1. Method 

The participants were 20 right-handed adults, aged 25;10 ± 4;1. The task design was like in 

the previous experiments, but here all digits always appeared simultaneously at t=0. The number 

line ranged from 0 to 400, and each number between 0 and 400 was presented once. 

We applied the same regression analysis method as above, this time with 5 predictors: the 

unit digit U, the decades D (0, 10, 20, …), the hundreds H (0, 100, 200, 300 or 400), the previous 

target N-1, and the spatial-reference-point-based bias function SRP, modified to match the 0-

400 number line length. 

4.5.2. Results and Discussion 

 
Fig. 4.5. Regression results of Experiment 4.3 (3-digit numbers, simultaneous presentation of all digits). 

The hundred and decade effects build up in almost exact parallel, replicating the findings of two-digit 

numbers. The 3-digit design implies that unit-hundred binding errors would have a strong effect on the 

unit digit (1:100), and indeed the unit effect is over-weighted here more than in the two-digit case. 

The trial-level measures and the general pattern of trajectory effects (Table 4.1) resembled 

the previous experiments, but the finger was slower here by about 20% than in previous 

experiments, suggesting that the task is more difficult for 3-digit numbers than for 2-digit 

numbers. Crucially, the effects of the two leftmost digits (hundred and decade) built up in almost 

exact parallel, with a transient small overweighting of the decade digit (Fig. 4.5), replicating the 

decade-unit parallel buildup observed in previous experiments. The unit effect was higher than 

the decade and hundred effects during a transient time window, suggesting again a certain 

degree of binding errors. The effect of binding errors on the unit effect was unsurprisingly much 

larger here than in experiments with two-digit numbers, because each unit-hundred binding error 

results in processing the unit digit with 100 times its real weight. 

The almost perfect alignment of the hundred and decade effects is hard to reconcile with the 

sequential-processing view. This view must now assume that the virtual delay caused by binding 

errors was exactly identical not only with the real decade-unit delay in the previous experiments 
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but also with the delay between the hundred and decade digits in the present experiment. Such 

coincidence seems hardly plausible. The results therefore strongly suggest that a purely 

sequential processing of the digits is not the best explanation. Rather, the quantities provided by 

the different digits appear to feed finger movement in parallel, yet – as shown in the previous 

experiments – with a small idle time during which the units can be delayed without any 

consequence on behavior. In the General Discussion below, we present a model that formalizes 

those hypotheses and can account for the results. 

4.6. Discussion of Chapter 4 

4.6.1. The properties of number-to-quantity conversion processes 

This chapter examined how the decade and unit digits of a two-digit number interact when 

transforming the number to quantity. We used a number-to-position mapping task, which forces 

the participants to convert the digit string to quantity, and we monitored the finger trajectories 

to get an insight into the temporal dynamics of this quantification process. 

The main findings, which any theory of number comprehension should account for, can be 

summarized as follows. First, when decades and units were simultaneously presented, their 

effects on finger movement built up in parallel, with a small over-weighting of the unit digit 

relative to the expected decade-unit ratio of 10:1. Second, the timing of the decade effect 

depended only on the decade digit: delaying the presentation of the decade digit by Δt induced 

an identical delay Δt in the effect of the decade quantity on finger movement. Delaying the 

presentation of the unit digit hardly modified the decade effect on finger movement. Third, 

unlike the decade effect, the timing of the unit effect depended on both digits. Delaying the unit 

digit by up to about 35 ms had almost no effect on finger movement. Delaying the unit digit by 

Δt > 35 ms induced a delay in the effect of the unit quantity on finger movement, and the size 

of this delay was smaller than Δt by about 35 ms. Last, the relative weighting of decades and 

units was sometimes biased. Imposing a decade-unit onset discrepancy resulted in an 

amplification of the amplitude of the unit digit and, correspondingly, a reduction in the 

amplitude of the decade digit. These weighting errors were largest in Experiment 4.2 and in the 

D# block in Experiment 4.1, where the two-digit stimulus was preceded by a transient single-

digit number.  
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In turn, these findings afford several conclusions: 

1. Immediate processing of the decade digit. The finding that the decade effect depended 

solely on the decade digit onset time indicates that the decade digit is processed as soon as 

it appears, without having to wait for the unit digits. This means that the quantity system, 

and the decision stage following it, operate as a continuous integrator of the information 

carried by the various digits. In particular, when the decade and unit information become 

available at different times, the finger aiming can be initially guided by just the decade digit 

and be corrected later, when the units information arrives. The trajectory-tracking paradigm 

is therefore sensitive enough to track the time course of the processing of the two digits with 

a high temporal resolution. This continuous nature of movement programming, and the 

ability to capture it with finger tracking, is supported by several other studies, both with 

continuous spatial response like here (Pinheiro-Chagas et al., 2017; Chapter 5) and with 

binary responses (Dotan et al., 2017; Finkbeiner et al., 2014, 2008; Finkbeiner & Friedman, 

2011; Freeman, Dale, & Farmer, 2011; Santens et al., 2011; Song & Nakayama, 2008a, 

2008b, 2009).  

This finding clearly refutes any model that assumes a single decision point for movement – 

in particular the lexical model, which postulates that the entire two-digit string is recognized 

and mapped to a whole-number quantity, and the max model, which postulates that the finger 

deviates only after both digits were quantified and merged. Such models cannot account for 

the finding that in some conditions, the finger first moved according to the decade quantity 

whereas the unit effect kicked in later. This discrepancy between the decade and unit effects 

implies either a continuous updating or, at least, two movement decisions, one based on the 

decade and another based on the full two-digit number.  

2. Idle time window in the units processing pathway. The unit effect showed a completely 

different pattern: any lag of Δt in the unit digit onset time resulted in a delay of Δt - 35 ms 

in the unit effect, and a lag smaller than 35 ms caused no delay. This indicates that the 

pathway for processing the unit digit contains an idle time window of approximately 35 ms, 

during which the unit digit appears to be waiting for the end of a bottleneck process initiated 

by the decade digit. Below, we propose a model that specifies what this process might be. 

The pattern of the unit effect clearly shows that the digits are not processed fully 

independently and in parallel, as proposed by the parallel-decomposed model presented in 
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the Introduction. If this were the case, the unit digit should have been processed immediately 

as it appeared, with no idle time window, and any delay in the unit onset would be fully 

reflected in its effect on finger movement.  

3. Errors in binding digits to decimal roles. In our experiments, all stimuli were two-digit 

numbers. When the transient stimulus was a single-digit number, we observed a bias in the 

weights of the digits – decades were underweighted and units were overweighed – and this 

bias increased as a function of the duration of displaying the single-digit transient stimulus. 

Our interpretation of this pattern is that the decade and unit digits are sometimes bound to 

incorrect decimal roles. Thus, the decade digit is sometimes processed as units, with ⅒ its 

weight, and correspondingly the unit digit is sometimes processed as decades, with 10 times 

its weight. These binding errors are facilitated by displaying a digit alone on screen rather 

than as part of a two-digit number.  

4. Parallel decade and unit processing in simultaneous presentation. When the digits were 

presented simultaneously, they contributed to the quantity in parallel and in 10:1 ratio. This 

finding is extremely robust – it was observed in several experiments with two-digit numbers 

(here and in the previous chapters), and even between the hundred and decade digits of three-

digit numbers (Experiment 4.3).  The unit digit was typically slightly overweighed relatively 

to the decade digit, suggesting perhaps that some degree of binding errors existed even when 

the digits were displayed simultaneously. 

The existence of binding errors could have conceivably supported the possibility that 

decades and units are actually processed serially. Serial processing should result in serial 

effects on finger movement – first the decade effect, then the unit effect – but this serial 

pattern could be masked by binding errors: such errors increase the unit effect relatively to 

the decade effect, making the unit effect appear earlier (because in our regression analyses, 

a larger effect is almost indistinguishable from an earlier effect). However, our data is not 

in good agreement with this serial-processing model. Complete masking of the serial pattern 

would require that the virtual delay, induced by binding errors, would have exactly the same 

duration as the real delay, induced by serial processing. To accommodate the robust finding 

of parallel effects of the different digits, a serial-processing model would have to explain 

why the real and virtual delays consistently have identical durations, in two-digit and three-

digit numbers. At present, we see no such explanation. 
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This remarkable degree of coordination between decades and units is a robust finding in 

expert readers, yet apparently it is not a trivial ability for the quantification system. Children, 

even not very young ones, show a completely different pattern. In the previous chapter, we 

described the performance of 4th grade children in the number-to-position task with 

simultaneous presentation of the two digits (Section 3.5.1). We observed a discrepancy of 

50-100 ms between the decade and unit effects on finger movement, suggesting that the 

children were processing the digits serially, first the decades, then the units. Thus, even after 

learning to read multi-digit numbers, the cognitive system may require several more years 

to develop its full ability to process the digits in parallel and weight them correctly relative 

to each other. Furthermore, this ability can be impaired following a brain damage, making 

an adult exhibit the serial pattern typical to children (Chapter 9). 

Methodologically, the present data joins several studies in showing the ability of finger 

tracking to dissect the temporal aspects of cognitive processes, in particular when using 

manipulations that change the stimulus during a trial (Dotan et al., 2017). Finger tracking 

therefore has the potential of becoming a useful and simple behavioral tool to dissect cognitive 

processes temporally, and may even provide sufficient accuracy to serve as a diagnostic tool for 

single individuals (Chapter 9). At the same time, the present study also demonstrates a limitation 

of this paradigm: it confounds time and space, such that an earlier effect on the finger movement 

is almost indistinguishable from a larger effect on the finger movement. In our task, this 

limitation confounded the effects of delaying a digit and of binding errors. In the future, newer 

analysis methods may perhaps be able to address this limitation (e.g., single-trial analyses, 

Dotan et al., 2017). 

4.6.2. A revised model of number-to-quantity conversion 

Our findings refute all the number-to-quantity conversion models presented in the 

Introduction: the lexical model, the parallel-decomposed model, and the max model. To account 

for the data, we propose the following hypothetical model of number processing (Fig. 4.6). This 

is an enhancement of the model we proposed in Chapter 3, which referred to several stages in 

the number-to-position task (symbol identification of the digits, quantification, decision, and 

pointing), and proposed a detailed Bayesian model of the decision stage. The present data 

suggest a more refined model of the first two stages, identification and quantification, during 
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which subjects must convert the digit shapes on screen into a representation of the corresponding 

quantity. 

 
Fig. 4.6. Proposed model for two-digit number comprehension. The appearance of the leftmost digit 

triggers the identification of number length (light blue) and the subsequent formation of a syntactic 

frame (yellow). In parallel, the two digits are visually identified (dark blue). The formation of the 

syntactic frame imposes a bottleneck: while the frame is being created, the processing of digits is idle 

(grey). This idle time window lasts about 35 ms. Once the frame is ready, each digit can be assigned to 

a decimal role, quantified accordingly (red), and merged into a whole-number quantity representation 

(green), which continuously feeds the decision process that drives the finger movement (purple). Each 

panel illustrates how the predicted delays arise in each stimulus condition: (a) When the digits are 

presented simultaneously, they simultaneously integrate into the whole-number representation and 

affect the finger movement. (b) Delaying the decade digit onset by Δt delays the syntactic frame 

initiation, and consequently should delay the quantification of both digits by the same Δt. In our 

experiments, the unit delay in this case was masked by a large overarching effect of unit amplification, 

which we attribute to an erroneous assignment of digits to their decimal roles. (c) Short delays (Δt < 35 

ms) in the onset of the unit digit of a two-digit number do not affect the syntactic frame creation, so 

they are fully absorbed by the idle time window and have no effect on finger movement. (d) Longer 

delays in the unit onset are partially absorbed by the idle time window, so the unit effect is delayed but 

by less than Δt. 

A two-digit number must be initially processed as two independent shapes, because the two 

digits are projected to distinct retinotopic locations. At some point, however, the system must 

stop processing the digits independently and bind them to distinct roles, one being the leftmost 

decade digit (worth 10) and the other being the rightmost unit digit (worth only 1). This process 
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is not trivial because the absolute location of the digits may vary relative to the fixation point, 

and indeed the order of digits is encoded by a dedicated process (Friedmann et al., 2010; 

Chapter 7; for an analogous distinction in word reading, between spatial location of letters and 

their within-word positions, see Dehaene et al., 2004). The digit identities, their relative order, 

and the number of digits are sufficient information to assign each digit its decimal role as 

decades or units. We propose that this is done by binding the digits to a syntactic frame of the 

multi-digit number. The term “syntactic frame” is a concept borrowed from models of digit-to-

verbal number transcoding, where it was found indispensable to account for the errors made by 

various patients with brain lesions (Cohen & Dehaene, 1991; McCloskey, 1992; McCloskey et 

al., 1986). Here, it refers to a mental representation of the structure of the multi-digit number 

that takes into account its overall length, but not yet the specific digit values. The syntactic frame 

of a single-digit number has one placeholder ‘u’, for the unit quantity; the syntactic frame of 

two-digit numbers has two placeholders, ‘d’ for the decade quantity and ‘u’ for the unit quantity; 

and so on. After the syntactic frame was created (Fig. 4.6a, yellow), the digits, which were 

visually identified (dark blue), are assigned decimal roles by binding each digit to the 

corresponding placeholder in the syntactic frame, and quantifying the digit according to this 

decimal role (red): the value of the ‘d’ digit is interpreted as a decade, i.e., multiplied by 10 

compared to the value of the ‘u’ digit. The per-digit quantities are combined into a whole-

number quantity (green) and fed to the decision process that determines the target location and 

eventually drives the finger movement (purple). 

The selection of an appropriate syntactic frame requires knowing how many digits the 

number has. The model postulates that this information is extracted by a dedicated number-

length encoder process (Fig. 4.6a, light blue color), which is a part of the visual analyzer of 

numbers. The number-length detector is thought to be one of several processes that encode the 

number’s decimal structure even before specific digits were identified. When reading numbers 

aloud, this quick identification of the number structure allows the verbal system to prepare itself 

for saying a verbal number with this structure (Cohen & Dehaene, 1991; Chapter 7). The same 

idea may apply here: quick identification of the number structure (its length) is needed to initiate 

the appropriate quantity syntactic frame as fast as possible so not to delay the subsequent 

processing stages. 

Our model assumes that decades and units can be processed asynchronously and 

independently at all stages, except a single bottleneck point – the creation of the syntactic frame. 
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Crucially, the identification of number length, and consequently the initiation of the syntactic 

frame, is triggered by the decade digit in the two-digit number (or, more generally, the leftmost 

digit in numbers of arbitrary length). This explains why any delay in the decade digit impacts 

on the syntactic frame initiation and consequently on the binding and quantification of both 

digits (Fig. 4.6b). Assuming that the syntactic frame takes about 35 ms to form, the model can 

also account for the IDLE pattern in two-digit numbers: a short delay (< 35 ms) in the visual 

presentation of the unit digit has no effect (Fig. 4.6c) because this delay is entirely absorbed by 

the contemporaneous formation of the syntactic frame. As a result, the timing of the unit 

quantification process remains unchanged. Only a delay of Δt > 35 ms in the unit digit onset is 

large enough to make the visual identification process end after the syntactic frame initiation, 

thereby delaying the unit quantification by Δt – 35 ms (Fig. 4.6d). Importantly, the number 

length detector does not rely on the unit digit. However, it may rely on identifying any digit in 

the unit position, so the process may break down, at least occasionally, if the unit position is 

occupied by a non-digit placeholder. This may explain why the IDLE pattern was not observed 

in the D# condition in Experiment 4.1. 

Our model may settle a long-lasting debate about whether the quantity representation of two-

digit numbers is holistic or decomposed. Some studies argued that a holistic quantity of the two-

digit number is created (Dehaene et al., 1990; Fitousi & Algom, 2006; Reynvoet & Brysbaert, 

1999; and Chapter 2), whereas others argued for decomposed single-digit quantities (Meyerhoff 

et al., 2012; Moeller, Fischer, et al., 2009; Nuerk & Willmes, 2005). Our model reconciles these 

views: each digit is first processed independently and quantified separately, but the per-digit 

quantities are immediately merged to a whole-number quantity representation. 

4.6.3. Conclusion 

Our data suggests that converting multi-digit numbers to quantity involves a mixture of 

serial and parallel processing. On one hand, there was a bottleneck process that imposes serial 

processing. On the other hand, all other stages seemed to process the digits in a parallel and 

asynchronous manner, both before and after the bottleneck – i.e., not only in the visual 

recognition of digits, but even in the deeper processing stages of conversion to quantity. This 

remarkable degree of parallel processing is not trivial, and indeed it apparently takes years to 

develop (Section 3.5.1). Future studies may investigate its stages of development, as well as 

whether certain kinds of input are needed to facilitate this development. 
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5. Tracking the mental updating of Bayesian priors° 

Abstract. This chapter focuses on the decision-making processes involved in a number-to-position 

mapping task. Bayesian theories of decision making predict that optimal decisions are reached by 

starting from a prior probability distribution, acquired from previous trials, and then updating it 

according to the specific evidence received on the current trial. Here, using our trajectory-tracked 

number-to-position task, we provide direct behavioral evidence that human decisions unfold in this 

order. We manipulated either the prior, via the distribution of target numbers in an experimental 

block, or the initial finger direction. In both cases, the finger first pointed in the instructed direction, 

then to the inferred prior, and finally to the trial-specific target. During the intermediate stage, pointing 

to the prior was observed even when it implied transiently deviating away from the target. This pattern 

fits a Bayesian model where decisions are initially driven by prior knowledge and only then by the trial-

specific evidence. 

5.1. Introduction 

Hundreds of times a day we need to choose one action among several possible. The last two 

decades have seen major advances in our understanding of the cognitive and neural processes 

involved in simple decision making, and in our ability to account for simple decisions with 

formal mathematical models (Glimcher, 2003; Gold & Shadlen, 2007; Kiani, Corthell, & 

Shadlen, 2014; Ratcliff & McKoon, 2007). Such models consider that humans decisions are 

close to the normative optimum provided by Bayesian reasoning. They assume that the subject 

maintains a likelihood for each possible decision outcome (Barthelmé & Mamassian, 2010; 

Knill & Pouget, 2004; Smith & Ratcliff, 2004), and continuously updates these likelihoods by 

accumulating evidence arising from the stimulus, until a decision criterion is met (Gold & 

Shadlen, 2002; Kiani, Hanks, & Shadlen, 2008; Lo & Wang, 2006; Ratcliff & Rouder, 1998; 

Roitman & Shadlen, 2002). Neurophysiological recordings strongly support this model of 

decision making (Gold & Shadlen, 2001; Kopp, 2006; Zylberberg, Fetsch, & Shadlen, 2016). 

The activity of neurons in prefrontal parietal cortex appears to build over time, with a slope 

monotonically related to the available evidence, up to a threshold level, as expected under the 

hypothesis that they encode the likelihood or likelihood ratios of the decision outcomes (Kiani 

& Shadlen, 2009; O’Connell, Dockree, & Kelly, 2012; Roitman & Shadlen, 2002). Furthermore, 

stronger activity, presumably reflecting sharper distribution of likelihoods, results in higher 

confidence in the decision (Kiani & Shadlen, 2009). 

                                                 
° This chapter has supplementary material in Appendix B. 
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One of the pillars of the Bayesian framework, and the topic of the present study, is the prior. 

Even before any evidence is obtained, Bayesian decision theory dictates that we should entertain 

a prior distribution of likelihoods, based on our past experience and expectations. Evidence 

accumulated about the specific situation at hand gradually modifies the prior, and it becomes a 

posterior distribution likelihoods. This formulation predicts that in a task with continuous 

response, the behavior within a trial should be initially governed by the prior and only later by 

the posterior.  

In line with the Bayesian notion of a prior that is based on past experience and expectations, 

pointing studies showed that the location where the participant pointed at was affected by the 

distribution of stimuli in the experiment (Cicchini et al., 2014; Kording & Wolpert, 2004). 

Decisions are also affected by the recently-presented stimulus (Abrahamyan, Silva, Dakin, 

Carandini, & Gardner, 2016; Cicchini et al., 2014). However, the use of end-of-trial measures 

limited the ability of these experiments to resolve the inner dynamics of a trial. The present 

study specifically explored this point: it examined whether, within a trial, the effect of prior 

occurs before the effect of the trial-specific target (the posterior). Discovering such temporal 

dynamics would provide further support to the Bayesian interpretation of decision tasks. 

We examined this prediction with the number-to-position mapping task, which is a simple 

decision task. As in the previous chapters, we recorded the finger pointing throughout the trial 

and examined the factors that affected the pointing in different temporal stages.  

In Chapter 3, we proposed a full Bayesian account of the number-to-position task. This 

model assumes that the participants maintain the likelihood for each possible target location. In 

each trial, the likelihoods are initialized to a prior inferred from the distribution of previous 

target numbers in the experiment. Then, these likelihoods are gradually updated according to 

the present target, with the finger movement reflecting this gradual update (Section 3.7.2; see 

also Cicchini et al., 2014). In the experiments described in the previous chapters, where the 

distribution of stimuli was flat, we observed a pattern consistent with this model: the finger 

initially moved towards the middle of the number line, which is the expected target location 

given a flat prior. During this stage, the finger was additionally affected by the numbers 

presented on previous trials, with exponentially decreasing influence of trials N-1, N-2, N-3, 

etc. Mathematical modeling showed that these findings were in prefect agreement with the 

notion of a Bayesian prior that gets updated by recent information and gradually forgets older 

information (Abrahamyan et al., 2016; Chapter 3). 
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Nevertheless, pointing towards the middle cannot be taken as an unambiguous marker of 

prior-driven behavior. It could be simply attributed to the task’s motor instructions, which 

prohibited pointing sideways at the beginning of a trial. To address this confound, we designed 

two experiments that dissociate between the finger direction implied by the prior distribution of 

numbers, and the initial pointing direction given by the instructions. In Experiment 5.1, the 

instruction required initial pointing to the middle of the line, but the distribution of target 

numbers was biased towards small, average, or large numbers in different blocks, therefore 

inducing a prior biased to the left, the middle, or the right of the number line. Conversely, in 

Experiment 5.2 the prior was constant (a fixed, flat distribution of target numbers), but the initial 

pointing direction was manipulated by explicitly instructing participants to start each trial by 

pointing left, middle or right. Bayesian theory predicts that in both experiments, finger 

movement would be governed first by the instructed pointing direction, then by the prior, and 

finally by the trial’s target number. Counterintuitively, this model also predicts that on trials 

where the instructed direction pointed straight at the target, but the prior differed, subjects would 

transiently deviate away from the target in order to accommodate the prior. 

5.2. Method 

5.2.1. Participants 

Participants were right-handed adults with no reported cognitive disorders, with Hebrew as 

their native tongue, and were compensated for participation. There were 18 participants in 

Experiment 1 (mean age = 25;1, SD = 2;4) and 24 participants in Experiment 2 (mean age = 

26;3, SD = 4;1). 

5.2.2. Procedure 

We used the number-to-position task described in Chapter 2, with a 0-100 number line. Each 

experiment included 3 blocks, administered in random order, with 202 trials per block. In 

Experiment 5.1, unknown to the participants, each condition (block) had different target 

distribution (Fig. 5.1a): flat (equal probability for all targets); biased to large numbers (each 

target appeared |3 �?GU>�
��� } times, and 0 appears once), or biased to small numbers (a mirror 

symmetry of the large-number condition distribution). Each condition was preceded by 21 

calibration trials, in which the target numbers were selected (with flat distribution) from a biased 

range – 0-42 (in the small-bias block), 58-100 (in the large-bias block), or from the whole range 
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0-100 (in the flat block). Calibration trials were aimed to reset the prior bias according to the 

experimental condition and to override any potential prior from previous blocks. They were 

administered as part of the block but not analyzed. 

 

 
Fig. 5.1. Logic of the experiments dissociating Bayesian prior from initial finger direction.  

(a) Experiment 5.1 manipulated the Bayesian prior by setting different distribution of target numbers 

per block. The initial finger direction was straight up in all blocks. (b) Experiment 5.2 used a fixed prior 

(flat distribution of target numbers) and manipulated the finger initial direction across blocks. 

 

In Experiment 5.2, all conditions had a flat distribution of targets, and they differed only in 

the finger initial direction (Fig. 5.1b): the participants were explicitly instructed to start each 

trial with movement towards the left end of the line (corresponding to target 0; the start rectangle 

was tilted 30º to the left), to the middle of the line (corresponding to 50: straight start rectangle), 

or its right end (corresponding to 100; start rectangle tilted 30º rightwards). 

5.2.3. Data preprocessing and trajectory analysis 

The data was preprocessed as described in Section 2.2. To analyze trajectories we used the 

two-stage regression method introduced in Chapter 2. Within each experiment, all three 

conditions were analyzed together. One regression was run per participant and time point in 50 

ms intervals on the implied endpoints. The predictors were the target number (denoted N), the 

target number of the previous trial (denoted “N-1”), and the Condition. In Experiment 5.1, the 

Condition predictor was the average target number per block (42.5, 50, or 57.5). In 

Experiment 5.2, Condition was the initial direction (0, 50, or 100). In Experiment 5.1, we also 

included the targets of preceding trials (N-2 to N-10) as additional predictors, to account for 

possible correlation between them and the Condition predictor. Furthermore, in Experiment 5.1, 

to avoid statistical biases due to between-condition differences in the number of trials with each 
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target number, only one trial per target was included in the regression analysis (the last 

occurrence of each target number). 

5.3. Results 

5.3.1. Experiment 5.1: Manipulating the prior 

Visual inspection of the trajectories suggested that participants were sensitive to the 

distribution of target numbers: in the two biased-prior conditions, the trajectories were 

transiently biased leftwards or rightwards (Fig. 5.2a), a pattern that was observed even on single 

trials for some participants (Fig. 5.2b). To quantify this pattern, the trajectory data was submitted 

to the two-stage regression analysis described in Methods: on each time point, the implied 

endpoints were regressed against the Condition (defined as the average target per block), the 

target number, and the target of the 10 previous trials (N-1 to N-1). This analysis revealed a 

succession of three effects (Fig. 5.2c): in the beginning of a trial, only the constant factor had a 

strong effect (blue curve), indicating that the finger aimed towards a more or less constant 

direction – the middle of the number line. This constant factor immediately started declining 

and completely disappeared by 500 ms post stimulus onset. In parallel, the finger movement 

became governed by the Condition factor (red curve). The Condition factor peaked at 400 ms, 

and started declining as the finger direction became dominated by the trial-specific target 

number (green). 
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Fig. 5.2. Results of Experiment 5.1, which manipulated the distribution of target numbers across blocks. 

(a) Average trajectory per target number in each condition. The condition-induced bias is clearly visible 

in the early trajectory parts. (b) For some participants, the condition-induced bias can be observed even 

in single trials. (c) Results of regressing implied endpoints against the present and 10 previous target 

numbers and the per-condition average target. The per-participant mean b values are plotted as a 

function of time (full dot = t-test significantly higher than 0). Shaded areas show one standard error 

below/above mean. b[const] is divided by 50, so b=1.0 corresponds with the middle of the line. The 

colors denote how the effects can be grouped to three sequential stages: instruction-driven (blue) → 

distribution-driven (red) → trial-driven (green). The inset in the bottom panel shows the mean b value 

over the interval 0-600 ms for the predictors of the 10 recent targets. 

 

Importantly, although the Condition predictor correlated with the target numbers (r = .32), 

its effect could not be reduced to an effect of the recent target numbers, because it was significant 

although the regression model included the 10 recent target numbers. The Condition effect 
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therefore reflects a genuine effect of the block-specific distribution of targets – namely, an effect 

of prior. Parallel to the Condition effect, the finger was additionally affected by the target of the 

previous trial (N-1) and, to a smaller extent, by the targets of several trials farther back (bottom 

panel in Fig. 5.2c), in accord with the findings in Chapter 3. The Condition and recent-trials 

effects rose and declined in similar time windows, suggesting that they resulted from a single 

cognitive process – the Bayesian prior. Thus, the prior was not solely affected by the long-term 

distribution of targets, but also leaned towards the targets presented recently. The recent-targets 

effect decreased exponentially for trials farther back (Fig. 5.2c inset) – the exact pattern 

predicted under the hypothesis that the prior is learned from accumulation of evidence over 

trials, with some forgetting of older information (see Section 3.7.2).  

The pattern of results agrees with the three-stage Bayesian process described in the 

Introduction: pointing to a default initial direction (blue); pointing according to the per-

condition distribution of target numbers, i.e., according to a Bayesian prior (red); and pointing 

to the estimated location of the target number, i.e., according to a Bayesian posterior (green). 

These three stages affected the finger sequentially: the effect of each stage started declining 

around the same time as the next effect started ascending. 

5.3.2. Experiment 5.2: manipulating the finger initial direction 

In this experiment, participants were instructed for a different initial finger direction in each 

block. Visual inspection of the average trajectories suggested that the participants complied with 

this instruction (Fig. 5.3a, Fig. B.1). Strikingly, single-trial trajectories suggested that, as 

predicted, in an intermediate stage, participants quickly returned to pointing towards the middle 

of the number line, which is the direction implied by the prior in this experiment, even when 

this movement transiently carried the finger away from the target (Fig. 5.3b). For instance, when 

the target number was close to zero, and the instruction was to initially point towards 0, the 

trajectory was not an optimal straight line, but often deviated transiently towards the middle of 

the line. 
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Fig. 5.3. Results of Experiment 5.2, which manipulated the finger initial direction per block. (a) Average 

trajectory per target number (over all participants) in each condition. Clearly, the participants complied 

with the instructed initial direction. (b) Single trials clearly show that some participants transiently point 

towards the middle of the line, even when this drove the finger away from the target number. (c) Time 

course of the effects (same plot type as Fig. 1c). Here the predictors were the target number of the 

present and previous trials (N-x) and the per-condition initial direction (0, 50, or 100). The order of 

effects is the same as in Experiment 5.1 (instruction → prior → target), even if here they are reflected 

by different predictors. 

 

To evaluate the significance of this pattern, trajectories were submitted to a two-stage 

regression analysis where the implied endpoints were regressed against the Condition (the initial 

direction), the target number, and the target of the previous trial N-1 (see Methods). As in 

Experiment 5.1, three successive effects were observed (Fig. 5.3b). In the early trajectory parts 

(blue), the finger direction was dominated by the instructed initial direction (left/right/middle). 

This effect quickly declined, and completely disappeared by 550 ms. In parallel, starting from 

~200-250 ms, the finger started moving towards a fixed direction (Constant effect, red color) – 
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presumably the middle of the line – and was additionally affected by the previous trial. As in 

Experiment 5.1, the two predictors of this middle stage unfolded with a similar time course, 

suggesting that they originated in a single cognitive process. Their peak was at 400 ms, and then 

they declined as the finger direction became dominated by the target number (green). 

This temporal organization again suggests three consecutive stages of pointing, first 

according to the initial direction (blue); then according to a Bayesian prior, which in this 

experiment is a constant direction with an additional effect of the previous trial (red); and finally 

to the estimated location of the target number (green). 

5.4. Discussion of Chapter 5 

We start by summarizing the results. In two different experiments, the factors affecting 

finger movement could be separated into three successive stages, which both imply the same 

succession of cognitive stages and similar dynamics: (a) Initially, the finger pointed to a default 

direction (peak = 0 ms; end = 500 ms), whether this direction was fixed (in Experiment 5.1) or 

varied according to instructions (in Experiment 5.2). (b) Very quickly, the finger deviated 

towards the mean of the distribution of target numbers in the experimental block, as predicted 

by Bayesian decision making models. In Experiment 5.1, the distribution was condition-

dependent, so we observed a Condition effect in the regression. In Experiment 5.2, the 

distribution was flat in all conditions, so the regressions showed a contribution of the constant 

term, corresponding to a strategy of pointing towards the midline. At this stage the finger was 

also influenced by targets presented in the recent past. (c) Finally, from 350 ms on, the finger 

started deviating towards the target number of the present trial. 

Importantly, each of our experimental manipulations affected just one of these processing 

stages. In Experiment 5.1, manipulating the distribution of target numbers affected stage (b) but 

not stage (a), whereas in Experiment 5.2, manipulating the default direction affected stage (a) 

but not stage (b). Neither manipulation affected stage (c). This disordinal interaction indicates 

that the three stages of finger movement reflect three distinct stages of cognitive processing. 

A striking result of Experiment 5.2 is that participants reverted to the prior even on trials 

when this behavior transiently led their finger away from the target number (Fig. 3b). While 

such behavior may seem suboptimal, Bayesian theory fully account for its occurrence and 

explains why pointing towards the prior is an efficient strategy on average: as long as 

information about the target is still absent, this strategy minimizes the average error or and 

therefore reduces the average distance to future target location. More precisely, pointing towards 
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the mean minimizes the average quadratic error, while pointing towards the median minimizes 

the average absolute distance. The present data cannot distinguish between these possibilities, 

but subtle manipulations of the shapes of the prior distributions might be able to address this 

point in the future. 

Interestingly, during stage (b), the finger direction was affected by both the average 

distribution of targets (long-term prior) and by targets presented in the recent past. Those 

findings indicate that the prior is partially based on a long-term mean, and partially based on an 

exponentially decreasing update based on the history of recent targets. During the intermediate 

stage (pointing by target distribution), the finger was additionally affected by several recent 

target numbers. The size of this recent-trials effect decreased exponentially for trials farther 

back, replicating our previous findings (Fig. 3.3). Its time course unfolded in almost perfect 

temporal alignment with the time course of the long-term prior (Condition in Experiment 5.1, 

Const in Experiment 5.2), thus strongly suggesting that both effects originate from the same 

processing stage – pointing to a Bayesian prior. Indeed, previous mathematical modeling has 

demonstrated how this exponential pattern can arise in a mathematical model where the prior 

gets partially updated by new target numbers, with older targets gradually being forgotten 

(Abrahamyan et al., 2016; Section 3.7.2). 

Several alternative interpretations of the results can be ruled out. First, the findings cannot 

be explained by a model that assumes a single decision point per trial, because we clearly 

identified several successive direction changes, which were sometimes observed even in single 

trials (Fig. 5.2b, 5.3b). By the same argument, finger trajectory does not result from a single 

decision-to-move, but seems to be continuously fed by the progressive accumulation of evidence 

arising, first from the prior, then from the target. Indeed, in studies where the decision was based 

on sequentially presented stimuli, the finger changed its direction and speed during the trial, 

indicating progressive accumulation of the sequential evidence (Buc Calderon, Verguts, & 

Gevers, 2015; Dotan et al., 2017). 

 Second, the effects that precede the target number (Const, Condition, N-1) cannot be 

ascribed to a default behavior or a general aiming preference. Such default behavior should be 

observed right from the beginning of the trial, whereas in both experiments we observed some 

pre-target effects building up only after the trial started, and peaking hundreds of milliseconds 

later. Furthermore, those pre-target effects did not correspond to a fixed default behavior, but 

adapted flexibly to changes in long-term prior and the history of recent targets. 
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Third, as noted above, the perfect alignment of the middle stage effects – the target 

distribution effect and the recent-targets effect (red curves) – suggests that they have a single 

cognitive origin. Models that attributes these effects to different mechanisms – e.g., explaining 

the distribution effect as an overt strategy, or the recent-trial effect as a motor-level 

perseveration, cannot explain this parallelism. 

Methodologically, the present study confirms that finger tracking can illuminate the 

temporal dynamics of cognitive tasks (Finkbeiner et al., 2014; Freeman et al., 2011; Friedman 

et al., 2013; Pinheiro-Chagas et al., 2017; Song & Nakayama, 2008a). The present work also 

shows how the number-to-position task, which was typically used to study numerical cognition, 

can also serve as a platform to study decision making. Compared to other common decision-

making tasks, the number-to-position task offers two major benefits: first, it has multiple 

possible responses, whereas most tasks have two possible responses (Abrahamyan et al., 2016; 

Dotan et al., 2017; O’Connell et al., 2012; Pahl, Si, & Zhang, 2013; Resulaj et al., 2009). Second, 

it involves semantic access (to the quantity represented by the number), whereas most other 

tasks involve perceptual decision making. At the same time, the number-to-position task is still 

simple and well-defined enough to allow for accurate mathematical modeling (Cicchini et al., 

2014; Chapter 3). 

The present findings clearly demonstrate that the brain encodes a Bayesian prior distribution, 

based on the experience from a specific experimental block. The exact organization of this 

distribution, however, is yet unknown. An interesting question may be whether the brain stores 

a prior distribution in a detailed manner, e.g., a likelihood for each of the possible responses, or 

in a summarized manner, e.g., mean and standard deviation (Meyniel, Sigman, & Mainen, 

2015). The use of multiple-response paradigms such as number-to-position may be useful to 

investigate this question, and open the door to examine more accurately how the brain represents 

distributions of response-likelihoods, and to what extent it operates as a Bayesian machine. 
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6. From multiple digits to quantity: Discussion 

In a series of experiments, we investigated how multi-digit Arabic numbers are encoded as 

quantities. We used the number-to-position mapping task, which forces participants to convert 

a symbolic number into a quantity. The task was performed on an iPad while tracking the 

participants’ finger trajectories, and the nearly-continuous measure of finger position allowed 

analyzing the subsequent processing stages in a trial. To examine specific processes, different 

experiments manipulated the participant’s attentional state, the number of digits presented, the 

order and timing of their onset, the length of the number line, the participants’ prior expectations 

for the number to appear, and the finger’s initial direction.  

To account for the findings in these experiments, we propose the following cognitive model 

of the number-to-position mapping task (Fig. 6.1). The model describes four main processing 

stages: visual identification (blue); quantification, which includes several sub-stages, detailed 

below (yellow-red-green); decision (purple), also with several sub-stages; and pointing (brown).  

 
Fig. 6.1. A model for the processes involved in the number-to-position task. The quantification 

processes converts the multidigit string to quantity representations. The decision process is a Bayesian 

mechanism that uses this quantity, as well as other information about the task, context, and 

distribution of target numbers, to determine a target location. Movement is the motor processes that 

drive the finger to the decided location. 

Visual identification includes two processes. One process identifies how many digits the 

number has (Light blue). Another process identifies the digit symbols, presumably processing 

each digit independently of the other, i.e., if one of the digits appeared first – it can be identified 

without waiting for the remaining digit/s. Both processes of visual identification – the length 
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detector and the digit identity encoder – are presumably a part of the visual analyzer of numbers, 

and presumably also serve other tasks such as number reading (see Chapter 7). 

Quantification. At some stage, we create a syntactic frame (yellow) – a quantity-oriented 

mental representation of the number’s structure, which takes into account the number of digits 

in the multi-digit number but not yet their specific values. Concretely, the syntactic frame is a 

set of placeholders, one per decimal position. Thus, it can be created even before the specific 

digit symbols were identified; it only requires knowing how many digits the number has, and 

therefore depends only on the number-length detector. In two-digit numbers, the initiation of 

the syntactic frame seems to be triggered by the processing of the leftmost (decade) digit, 

suggesting perhaps that the number length detector relies on the leftmost digit. 

Once the frame was created and the digit symbols were identified, each digit is bound to a 

placeholder in the syntactic frame, and quantified according to this role (red). This is the stage 

where decades and units are assigned different weights – the decade digit weight will be 10 

times the unit digit weight. Next, the per-digit weighted quantities are combined to a single 

representation of the multi-digit number’s quantity (green). 

According to the model, almost all the mechanisms described so far can process the different 

digits simultaneously – in two-digit numbers, and perhaps even in three-digit numbers 

(Chapter 4). The only exception is the initiation of the syntactic frame, which is a bottleneck in 

the quantification pathway: until a syntactic frame was created, the process of binding-to-role 

and quantification is pending and cannot start. 

Decision (purple). The next stage determines the intended location to which the participant 

will aim the finger. This decision starts from the beginning of the trial, even before the quantity 

information is available. Initially the finger points to a default location – typically the middle of 

the number line, but explicit instructions can modify the default direction (as was the case in 

Experiment 5.1). This default direction is quickly overridden: first, a tentative target location is 

determined by the distribution of target numbers in the experiment. When quantity information 

becomes available, the decision is changed and the finger deviates towards the target location, 

which is determined using a nearly-linear scale. This transition occurs faster for smaller numbers 

(Chapter 3), presumably because their quantity representation is clearer than that of larger 

numbers (due to scalar variability or compressed quantity representation).  

Pointing (purple). The motor system continuously moves the finger towards the number 

line, and also deviates it towards the target location determined by the decision stage. The 
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number and frequency of finger deviations is an open issue. The mathematical model described 

in Chapter 3 took the simple assumption of a single deviation per trial, yet tablet-based pointing 

tasks clearly allow for more than one deviation per trial (Chapter 4; Dotan et al., 2017). One 

possibility is that the finger direction is changed only when the new target location, as 

determined by the decision stage, is distant enough from the finger’s current direction (Charles 

et al., 2014; Fishbach et al., 2007). Our findings agree with this notion, however, further research 

would be needed to investigate it in detail. 

 

Several questions remain unanswered by this model. In the quantification stage, the exact 

nature of the syntactic frame is yet unclear. Chapter 4, which examined this matter, used mostly 

two-digit numbers. Does a similar process occur for longer numbers, or are longer numbers 

quantified in a hierarchical manner? Does the syntactic frame handle the digit 0 in a special 

manner, as is apparently the case in syntactic processing in transcoding symbolic numbers 

(Cohen & Dehaene, 1991; Chapter 7)? 

Another issue is the existence of holistic two-digit quantity representation. Although initially 

we argued (in Chapter 2) that the logarithmic effect in the number-to-position task indicates 

holistic quantities, this conclusion may perhaps be questioned based on the newer interpretation 

of the logarithmic effect as resulting from an artifact of processing speed. Another open question 

concerns the mechanism that merges the decade and unit quantities into a single quantity: is this 

the same process that is also responsible for summing two quantities when performing additions 

(Chapter 4; Pinheiro-Chagas et al., 2017)? 

The subsequent processing stages also raise several questions. The output of the decision 

stage may be a continuously-updated decision, or alternatively a discrete set of decisions. We 

are also not certain how to explain the “spatial reference points” pointing bias (Section 2.3.2.6): 

it may originate in the stage of decision about the target location, as we suggested in Chapter 3, 

but it could also originate in other processing stages, e.g. pointing. Finally, understanding the 

pointing stage would require answering several questions, listed in the discussion of Chapter 3. 

Methodologically, the experiments described in this section join several studies in 

demonstrating the power of the finger-tracking and its ability to tap subsequent stages of 

decision making, in number processing and in other domains (Faulkenberry, Cruise, Lavro, & 

Shaki, 2016; Finkbeiner et al., 2014, 2008; Finkbeiner & Friedman, 2011; Marghetis et al., 2014; 

Santens et al., 2011; Song & Nakayama, 2008a, 2008b, 2009). In our view, the present research 
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makes two main contributions to the increasingly-used technique of finger tracking. The first 

contribution is the use of a task with continuous response (whereas previous studies used finger 

tracking mostly with dual decision tasks). The second is the set of fine-grained analysis method 

that we introduced here – e.g., the per-time-point multiple regression analysis and the analysis 

of movement onsets.  

 

The cognitive architecture we proposed here, a syntactic bottleneck process (the creation of 

a syntactic frame) surrounded by several parallel processes of visual recognition and 

quantification, suggests that the quantification process is not driven by single-digit processing 

but by the syntactic processes that handle the number’s decimal structure. This central role of 

structural processing is not unique to number comprehension: in number reading too, several 

processes explicitly represent the number’s decimal and verbal structure, and these structural 

mechanisms apparently drive the reading process (see Chapter 7). Structural processing prevails 

also in word reading: the morphological structure of words is explicitly represented in several 

processing stages, from visual analysis processes to phonological production processes 

(Beyersmann, Castles, & Coltheart, 2011; Dotan & Friedmann, 2015; Kohn & Melvold, 2000; 

Rastle, Davis, & New, 2004; Reznick & Friedmann, 2015). It may be the case that when faced 

with the need to convert compound stimuli from one representation to another, the cognitive 

system consistently tends to mediate the conversion process via deep representations of the 

compound stimulus structure. 
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Section B: From digits to number words 

Section A examined how we understand the meaning of a number, but very often it is not 

the number’s meaning that we are concerned with. Consider daily situations such as writing 

down on a piece of paper a phone number that someone told you; reading that number to 

someone; writing a cheque; reading aloud your laptop’s serial number to a customer support 

representative. In all these situations, what you would be concerned with is merely the number 

symbols, not the quantity they represent. And in many of these situations, you would have to 

transcode numbers from one symbolic code to another – either from digits to number words or 

vice versa. 

Section B of this dissertation examines the pathway of number reading – converting a 

sequence of digits into a corresponding sequence of oral number words. Our focus in this section 

is again syntax: we wish to characterize the syntactic mechanisms of number reading, i.e., the 

mechanisms that specifically handle the structural complexity of multi-digit numbers. This is 

done in Chapter 7: the study described in this chapter examined in detail the number processing 

abilities of seven individuals with number reading disorders. Based on the selective impairment 

of these individuals, we identified several specific processes in the number reading pathway, 

and we propose a detailed cognitive model of number reading.  

The two remaining chapters in section B examine the relation between the number reading 

pathway and other, potentially-similar processing pathways. Chapter 8 examined whether 

number reading and word reading make use of shared cognitive mechanisms. It describes the 

processes involved in reading words and numbers, proposes possible similarities between them, 

reviews associations and dissociations between impairments of word and number reading, and 

presents two case studies with previously-unreported word-number dissociations. We conclude 

that word reading and number reading are implemented by separate mechanisms. Chapter 9 

examines the relation between number reading (converting multidigit strings to number words) 

and number comprehension (converting multidigit strings to quantity). We report an aphasic 

patient who can comprehend multidigit number but cannot read them aloud, and conclude from 

this dissociation that at least some syntactic mechanisms involved in number reading do not 

serve number comprehension. 
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7. A cognitive model for multi-digit number reading: 

Inferences from individuals with selective impairments° 

Abstract. Reading multi-digit numbers aloud involves visual analysis of the digit string and oral 

production of the verbal number. To examine these processes in detail, we investigated the number 

processing abilities of seven individuals with different selective deficits in number reading. In 

particular, some participants were impaired in visual analysis of digit strings – in encoding the digit 

order, encoding the number length, or parsing the digit string to triplets (e.g., 314987 → 314 and 987). 

Other participants were impaired in verbal production, making errors in the number structure (shifts 

of digits to another decimal position, e.g., 3,040 → 30,004). These selective deficits yielded several 

dissociations: first, a double dissociation between visual analysis deficits and verbal production 

deficits. Second, several dissociations within visual analysis: a double dissociation between errors in 

digit order and errors in the number length; a dissociation between order/length errors and errors in 

parsing the digit string into triplets; and a dissociation between the processing of different digits – 

impaired order encoding of the digits 2-9, without errors in 0 position. Third, within verbal production, 

a dissociation between digit shifts and substitutions of number words. On the basis of these selective 

impairments and previous findings, we propose a detailed cognitive model of number reading. The 

model postulates that within visual analysis, separate sub-processes encode the digit identities and 

the digit order, and additional sub-processes encode the number’s decimal structure: its length, its 

triplet structure, and the positions of 0. Verbal production consists of one process that generates the 

verbal structure of the number, and another process that retrieves the phonological forms of each 

number word. We propose that the verbal number structure is first encoded in a tree-like structure 

and then linearized to a sequence of number-word specifiers, similarly to syntactic trees of sentences. 

7.1. Introduction 

Number reading is a complex cognitive operation involving several different sub-processes, 

each of which can be impaired and cause a different number reading malfunction (Basso & 

Beschin, 2000; Cappelletti et al., 2005; Cipolotti & Butterworth, 1995; Cipolotti et al., 1995; 

Cohen & Dehaene, 1991; Cohen et al., 1997; Dehaene et al., 2003; Delazer & Bartha, 2001; 

Deloche & Willmes, 2000; Dotan & Friedmann, 2015; Friedmann, Dotan, et al., 2010; 

McCloskey et al., 1985, 1990, 1986; Moura et al., 2013; Noël & Seron, 1993; Starrfelt & 

Behrmann, 2011; Starrfelt, Habekost, & Gerlach, 2010; Temple, 1989). How do these cognitive 

mechanisms operate? In the present study, we propose a detailed model of number reading. In 

doing so, we draw inspiration from word reading, another complex and potentially-similar 

                                                 
° This chapter is a manuscript submitted to the journal Cortex. The text here is identical with the submitted 
manuscript, except reformatting and removing some parts that would, if remained, repeat other sections of this 
dissertation. 
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cognitive function. Similarly to number reading, word reading also involves a variety of 

processes: visually analyzing the sequence of letters, accessing the appropriate entries in 

orthographic, phonological, and semantic mental lexicons, generating the phonological output, 

and articulation. After several decades of research, we now have a cognitive model with detailed 

specification of the processes involved in word reading and of the flow of information among 

these processes (Coltheart et al., 2001; Ellis, 1993; Ellis & Young, 1996; Friedmann & 

Coltheart, in press; Friedmann & Gvion, 2001; Humphreys, Evett, & Quinlan, 1990; Marshall 

& Newcombe, 1973; Patterson & Shewell, 1987; Shallice, 1988). This model turned out to be 

invaluable in several ways. From a theoretical point of view, an accurate model of word reading 

enables us to better understand the reading mechanisms, and supports detailed investigation of 

other language process such as morphology and lexical retrieval (Biran & Friedmann, 2012; 

Dotan & Friedmann, 2015; Friedmann, Biran, & Dotan, 2013; Funnell, 1983; Gvion & 

Friedmann, 2016; Job & Sartori, 1984; Reznick & Friedmann, 2009, 2015). From a clinical 

point of view, such a detailed model improves our ability to identify specific impairments in 

number reading and to treat individuals with such impairments (Castles & Friedmann, 2014; 

Colenbrander, Nickels, & Kohnen, 2011; Coltheart & Kohnen, 2012; Friedmann et al., 2013; 

Friedmann & Coltheart, in press; Friedmann & Gvion, 2001; Marshall & Newcombe, 1973; 

Nickels, 1997; Nickels, Rapp, & Kohnen, 2015; Rapp, 2005; Temple, 2006). The cognitive 

model of reading could not have been as useful had it not been very explicit in terms of 

information processing: the model accurately describes the function of each cognitive sub-

process involved in reading, and the kind of information transferred between these processes, in 

a manner detailed enough to allow for computational implementation (Coltheart et al., 2001). 

This high level of granularity is what allows characterizing the interaction between reading and 

other language processes, and makes it possible to identify specific cognitive disorders in 

specific processing stages. 

The reading of numbers (such as “256”) is implemented, at least in part, by separate 

mechanisms than the word reading mechanisms (Abboud, Maidenbaum, Dehaene, & Amedi, 

2015; Friedmann, Dotan, et al., 2010; Hannagan, Amedi, Cohen, Dehaene-lambertz, & 

Dehaene, 2015; Shum et al., 2013; for a review, see Chapter 8). However, number reading was 

not investigated as much as word reading, and less is known about it. During the 1990’s, there 

was much debate about the representation of symbolic numbers and the transcoding processes 

that convert between these representations (Cipolotti & Butterworth, 1995; Cipolotti et al., 1995; 
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Cohen & Dehaene, 2000; Dehaene & Cohen, 1997; McCloskey, 1992; McCloskey et al., 1990, 

1986; Sokol, McCloskey, Cohen, & Aliminosa, 1991). At present, a widely accepted model is 

the triple-code model of number processing (Dehaene, 1992; Dehaene & Cohen, 1995; Dehaene 

et al., 2003), which holds that separate cognitive and neural circuits represent numbers as 

sequences of digits, as verbal number words, and as quantities. With respect to number reading, 

the triple-code model postulates that the visual parsing of digital numbers and the verbal 

production of number words are handled by separate processes, connected by a direct digit-to-

verbal transcoding pathway that is at least partially separate from the access to number 

semantics. Indeed, several studies showed that the visual analysis of numbers can be selectively 

impaired (Cohen & Dehaene, 1995; Friedmann, Dotan, & Rahamim, 2010; McCloskey et al., 

1986; Noël & Seron, 1993), and so can the verbal production of numbers (Benson & Denckla, 

1969; Cohen et al., 1997; Delazer & Bartha, 2001; Dotan & Friedmann, 2015; Marangolo et al., 

2004, 2005; Chapter 9). 

The triple-code model, as well as many of the above studies, characterized the different 

number representations and transcoding pathways. Other studies, though fewer, were 

specifically concerned with offering a detailed cognitive model of number reading. Michael 

McCloskey and his colleagues (McCloskey, 1992; McCloskey et al., 1986) proposed a model 

where number reading – transcoding a digit string into number words – is mediated by a central 

semantic representation, which essentially reflects the number’s decimal structure  

(e.g., 2,031 = 2 x 103 + 0 x 102 + 3 x 101 + 1 x 100). Their model postulates that converting this 

representation to number words begins by creating a syntactic frame, which reflects the verbal 

structure of a number with a given number of digits – e.g., for a 4-digit numbers  the syntactic 

frame is [_:ones] [thousand:multiplier] [_:ones] [hundred:multiplier] [_:tens] [_:ones]. The 

notations [_:ones] and [_:tens] represent placeholders for a number word of the corresponding 

lexical class4. The syntactic frame is created and then “filled” with the specific digit identities 

(resulting, for the example above, in [2:ones] [thousand:multiplier] [_:ones] 

[hundred:multiplier] [3:tens] [1:ones]). In the filled frame, each slot uniquely identifies a single 

word. Some numbers have irregular structure – e.g., in English, the digit 0 is never verbalized – 

                                                 
4 McCloskey and his colleagues experimented in English and mentioned ones, teens and tens as lexical classes for 
words. However, the specific lexical classes may depend on the characteristics of verbal numbers in a specific 
language. Our study was conducted in Hebrew, in which the number words for hundreds and thousands often 
introduce some verbal irregularity and may therefore be lexicalized. This would result in hundreds and thousands 
as two additional lexical classes. However, this question – whether hundreds and thousands are indeed lexical 
classes in Hebrew – was not in the scope of the present study. 
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which results, as in the above example, in an unfilled slot. This unfilled slot would be discarded 

from the frame after it has been filled. Another example for irregularity in English is that a digit 

1 in the decades position results in a teen word. This too will result in modifying the filled frame, 

e.g., [1:tens] [3:ones] would be changed into [3:teens]. The filled frame is a plan for 

phonological retrieval: each combination of lexical class and digit value, or the specification of 

a multiplier word, is used to retrieve the corresponding phonological form of a single word. 

McCloskey suggested that this form is retrieved from the phonological output lexicon, but in 

Dotan and Friedmann (2015) we showed that number words are actually retrieved from a 

dedicated phonological store that is separate from the phonological output lexicon of words. 

Cohen and Dehaene (1991) proposed a modified version of this reading model: they 

proposed that the visual analysis of the digit string is immediately followed by verbal 

production, without mediation of a central semantic representation. The challenge for any 

number-reading model is how to handle the number’s decimal and verbal structure; Cohen and 

Dehaene proposed that this is implemented by two separate processes, one visual and one verbal. 

The visual process, which is a part of the visual analysis of numbers, is responsible for parsing 

the number’s decimal structure, which concretely consists of the number length (how many 

digits it has) and the positions of 0 and 1. The remaining digits (2-9) are identified by a separate 

process. Within the verbal mechanisms, Cohen and Dehaene accepted McCloskey’s notion of a 

syntactic frame, but proposed that it is quickly converted into what they termed a number word 

frame. Conceptually, the number word frame is the number’s verbal structure. Concretely, it is 

a sequence of lexical classes (ones, teens, tens) of the number words to be produced (the frame 

for 24,013 is [_:tens] [_:ones] [thousand] [and] [_:teens]). The number word frame is 

generated based on the number’s decimal structure: the number length determines how many 

words will be produced, the positions of 0 indicate number words to skip, and the existence of 

1 in the decade position separates teens from tens. The word frame is then filled with specific 

digit values and goes on to phonological retrieval and articulation. 

In terms of information flow, the concept of number word frame may seem like a small 

difference from McCloskey’s model: instead of filling the syntactic frame and only then 

modifying it according to 0’s and 1’s, as McCloskey proposed, Cohen and Dehaene propose 

that the syntactic frame is first modified by 0-1, resulting in a number word frame, and only then 

filled. Theoretically, however, the difference is important: Cohen and Dehaene propose a 
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concrete representation of the number’s verbal structure that is independent of specific digits or 

number words. 

Here we propose another model, which is a mixture of the above models with few 

modifications and additions. Similarly to previous models of number reading, it accounts only 

for the reading of positive, base-10 integers, and admittedly ignores very long numbers, whose 

reading may involve different processes (in this study we considered only numbers up to 6 

digits). The model also ignores the issue of “lexicalized” numbers such as “1984”, which may 

be identified as a whole and be processed in different pathways (Cohen et al., 1994). A general 

illustration of this model appears in Fig. 7.1, and we revisit it with more detail in the Discussion 

of this chapter. The model postulates that within visual analysis, one process extracts the 

number’s decimal structure, which consists of the number length, the positions of 0 (but not of 

1), and the way the number is parsed into triplets (e.g., 24013 is parsed as 24 and 013). Two 

other processes encode the digit identities and their relative order, and can provide the 1-9 value 

of each digit in the correct order. Within the verbal system, the number’s decimal structure is 

used to generate a number word frame, defined as in Cohen and Dehaene’s model. The number 

word frame is a sequence of word specifiers, each of which can be a number word lexical 

classes, a multiplier words (e.g., thousand, hundred; we hereby refer to them as “decimal 

words”5), and the function word “and”. These are used, in conjunction with the 1-9 digit value, 

to from the dedicated phonological store the corresponding sequence of words, which are then 

sent to articulation. 

The main components of this model are similar to those proposed by Cohen and Dehaene 

(1991): no semantic representation is mediating the digit-to-verbal transcoding; and we followed 

Cohen and Dehaene’s assumption of separate processes for visual parsing and verbal 

production, each of which is further divided into a “structural” component (decimal or verbal) 

and a “lexical” component (digits or words). From McCloskey’s model, we borrowed the notion 

that number words are retrieved according to lexical class and digit value. However, our model 

                                                 
5 In English, number words such as “hundred” and “thousand” are special in two respects. First, semantically, they 
impact the quantity in a predictable manner – they are multiplied by the preceding word, such that the quantity of 
“three hundred” is three times hundred, hence the term “multiplier”. Second, lexically: each multiplier is a single 
lexical item, separate from the units word (they are the “building blocks” of multidigit verbal numbers, Cohen et 
al., 1997; Dotan & Friedmann, 2015). We wish to keep the term “multiplier” to refer to the semantic notion, and 
use the term “decimal word” to refer to the lexical notion. Indeed, in some languages such as Hebrew, not all 
multipliers are decimal words. For example, “hundred” is a multiplier in the semantic sense, yet it is not an 
independent word: apparently, it is not a separate lexical entry in the phonological storage of number words, and 
for some numbers it is also not a separate orthographic entry (e.g., 200 is a single word – מאתיים, MATAYIM).  
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also proposes some modifications and enhancements to the existing models. First, we propose 

a different internal organization of the decimal structure extraction. In our model, the decimal 

structure does not consist of number length and 0,1 positions, but of number length, the positions 

of 0 (not 1), and the number’s triplet structure. Below, we bring evidence from number reading 

impairments in support of these claims. Second, the process of digit identification was broken 

here in two – a digit-identity encoder and a digit order encoder (Friedmann, Dotan, & Rahamim, 

2010). Third, we accept Cohen and Dehaene’s definition of the number word frame, however, 

how this frame is obtained is different in our model: we discarded the notion of a syntactic 

frame, and in the Discussion of this chapter we describe several specific processes involved in 

generating the number word frame. 

 
Fig. 7.1. A proposed cognitive model of number reading. Separate processes handle the visual 

analysis of the digit string and the verbal production of the number words. The visual analyzer 

has several distinct sub-processes: the digit identity encoder and digit order encoder provide 

the identity of each digit (1-9) in their respective order. Another set of sub-processes extract 

the number’s decimal structure. This decimal structure is used to generate a number word 

frame – the number’s verbal structure. The word frame is a sequence of one lexical class per 

number word (ones, teens, tens), and further specifies where decimal words (“thousand”, 

“hundred”) and the word “and” should be embedded in the number. Each entry in this 

sequence, in conjunction with the corresponding digit value, is used to retrieve the 

phonological form of one number word at a time. 

The present study reports seven neuropsychological case studies whose performance led us 

to propose the above model. We report individuals with selective impairments in three of the 

components depicted in Fig. 7.1: the encoding of digit order, the extraction of decimal structure, 

and the generation of number word frames. Previous studies showed that selective impairments 

are possible also in the three remaining components – the digit identity encoding (Cohen & 
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Dehaene, 1991), the phonological retrieval of number words (Cohen et al., 1997; Delazer & 

Bartha, 2001; Dotan & Friedmann, 2015; Girelli & Delazer, 1999; Marangolo et al., 2004, 

2005), and the articulation of number words (Shalev, Ophir, Gvion, Gil, & Friedmann, 2014; 

Chapter 9). Furthermore, we report specific dissociations that support the separation of decimal 

structure extraction into three distinct sub-processes – encoding the number length, identifying 

the positions of zeros, and splitting the number into triplets. 

7.2. Method 

7.2.1. Participants 

Seven individuals with various number processing impairments participated in this study: 

HZ and OZ were undergraduate students. EY was a PhD candidate whose performance was 

reported in Friedmann, Dotan, and Rahamim (2010). MA was a self-employed woman with 

undergraduate degree. ED and NL were sisters: ED had an undergraduate degree and worked in 

an administrative job, and NL was a BA student. Finally, UN was a retired lawyer who was 

recovering from a stroke that he had 3 months prior to our meeting. All participants were native 

speakers of Hebrew, with normal or corrected-to-normal vision. Table 7.1 shows their 

background information. 

Table 7.1. The participants’ background information 

 HZ EY MA ED NL OZ UN 

Gender F F F F F M M 

Age 24 34 26 31 24 20 79 

Dominant hand R R R R R R R 

Education years 13 20 15 15 13 14 20 

Acquired/Developmental deficit D D D D D D A 

All control participants were native speakers of Hebrew with at least 12 years of education 

and no reported cognitive disorders (other than the difficulties with numbers). They were 

compensated for participation. All participants and control participants gave informed consent 

to joining the study. The Tel-Aviv University ethics committee approved the experimental 

protocol. 

7.2.2. General procedure 

The participants were tested in a series of 1- to 2-hour sessions in a quiet room. All tests 

were conducted in Hebrew. Unless specified otherwise, EY read stimuli from the computer 
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screen, where each stimulus was presented for 400 ms, and the other participants read the stimuli 

from paper, where they were printed as vertical lists. Each task is described in the text below, 

additional methodological comments appear in the supplemental online material, and Table C.1 

lists the tasks used in this study and the processes that each task can tap. When the participants 

made both a correct and an erroneous response, the response was classified as an error. Error 

percentages were calculated out of the total amount of target numbers. 

Control participants with outlier error rates were excluded (see Table 7.2 for demographic 

details of the control participants in all experiments). Statistical comparisons of individual 

performance between conditions were done using chi-square test or Fisher’s exact test. 

Individual participants were compared to control groups using Crawford and Garthwaite's 

(2002) one-tailed t-test. In cases of a control group ceiling effect (mean error rate ≤ 2%), the 

low variance does not allow for a reliable statistical comparison. We arbitrarily decided that in 

such cases, 7% errors or more would be considered as impaired performance.  

 
Table 7.2. Control participants per experiment 

 No. of 

participants 

 Age 

Experiment Outliers Range Mean SD 

7.1 Number reading 20 3 20;7 - 30;4 25;5 2;7 

 Number reading (EY) 10 - 21;3 - 42;4 27;0 5;10 

7.2 Sequence identification 20 1 20;9 - 42;0 31;7 8;4 

 Sequence identification (EY) 10 - 23;0 - 35;5 29;2 5;6 

7.3 Same-different decision 24 1 20;9 - 42;0 30;0 6;11 

 Same-different decision (EY) 10 - 27;8 - 35;0 28;8 4;10 

7.4 Number matching 20 1 21;3 - 42;6 26;1 4;4 

7.5 Number repetition 20 2 20;7 - 42;4 26;1 4;8 

 Number repetition (EY) 10 - 22;10 - 28;8 25;2 2;0 

 Number repetition (UN) 15 - 21;9 - 30;1 25;0 2;4 

7.8 Same-different (length) 20 1 20;10 - 43;4 29;6 7;3 

7.10 Multiply/divide by 10 20 2 21;4 - 44;4 27;10 5;4 

7.11 Read numbers as triplets 20 - 24;8 - 49;4 35;1 7;7 

The “outliers” columns indicates the number of control participants who were excluded as outliers – i.e., 

their error rate exceeded the 75th percentile of error rates by more than 150% the inter-quartile distance. 

Some control groups were run for experiment versions used for a specific participant. These cases are 

indicated in the “Experiment” column by parentheses with the participant’s initials. 
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7.3. Experimental investigation 

7.3.1. Background: language assessment 

The participants' cognitive and language abilities were examined using several tasks  

(Table 7.3): digit and word spans (FriGvi, Friedmann & Gvion, 2002; Gvion & Friedmann, 

2012; comparison to control data was done using Crawford & Garthwhite (2002) t-test); picture 

naming (SHEMESH, Biran & Friedmann, 2004); reading single words, nonwords, and word 

pairs (TILTAN, Friedmann & Gvion, 2003); lexical decision (TILTAN, Friedmann & Gvion, 

2003), a task in which they classified letter strings as words or nonwords without reading them 

aloud (the task included both migratable nonwords, i.e., nonwords in which letter migration can 

yield an existing word, and non-migratable nonwords); nonword reading (TILTAN, Friedmann 

& Gvion, 2003); nonword repetition (BLIP, Friedmann, 2003); and writing single words and 

nonwords (TILTAN, Friedmann, Gvion, & Yachini, 2007). 

Table 7.3. Memory spans, and error percentages in language tasks 

 No. of 

items HZ EY MA ED NL OZ UN 

Memory spans         

 Digit (free recall)  6 5* 5* 5* 5* 6  3 ** 

 Digit (matching)  7  7 7 7 7  4 

 Word (free recall)  6  4* 4½ 5 6  3 * 

 Word (matching)  7  5 7 7 7  2 ** 
 

     
 

  

Picture naming 100 1  0 2 3 2  26 *** 
 

     
 

  

Word reading 136        

 All errors   14***    16*** 2 1 3 1  12 *** 

 Migration errors a   24***    30*** 0 0 0 0  0 
 

     
 

  

Lexical decision 60        

 Migratable nonwords 15 60+++  65+++ 0 0 0 7+++  0 

 Non-migratable nonwords 15 20+++   5 0 0 13+++ 7+++  7 +++ 
 

     
 

  

Nonword reading 40        

 All errors  43*** 17** 8 3 8 5  57 *** 

 Migration errors  35*** 17*** 8 0 3 3  3 
 

     
 

  

Nonword repetition 48 2  4+ 2 2 4+  46 *** 
 

     
 

  

Word writing 50 14***  4 2 2 4  28 *** 

Comparison vs. control group:  + p < .1     * p < .05     ** p < .01     *** p < .001 

               +++ Errors ≥ 7%, control group ≤ 2% errors 
a Migration errors out of all words with lexical potential for interior migration 
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These tasks showed that HZ and EY had letter position dyslexia, a selective deficit in letter 

position encoding by the visual analyzer (Friedmann, Dotan, & Rahamim, 2010; Friedmann & 

Gvion, 2001; Friedmann & Rahamim, 2007; Kezilas, Kohnen, McKague, & Castles, 2014; 

Kohnen, Nickels, Castles, Friedmann, & McArthur, 2012). Both of them had high rate of letter 

migration errors in word reading and in lexical decision – two tasks that have orthographic input 

so they involve the orthographic-visual analyzer. Conversely, they did not have migration errors 

in tasks that did not involve the orthographic-visual analyzer (i.e., tasks without orthographic 

input): neither had errors in spontaneous speech, and HZ did not have many migrations also in 

formal tasks without orthographic input – picture naming, nonword repetition, and sentence 

elicitation. HZ also had a mild surface dysgraphia. 

MA, ED, NL, and OZ had intact word reading, writing, and naming (for a detailed 

comparison of number reading with word reading, see Chapter 8). UN, the participant with 

acquired aphasia, had impairments in writing and naming and a low digit span (lower than that 

of the other participants). He also had some difficulty in reading. Most of his reading errors were 

surface errors and vowel letter errors, which typically originate in processing stages later than 

visual analysis (Friedmann & Lukov, 2008; Gvion & Friedmann, 2016; Khentov-Krauss & 

Friedmann, 2011). 

EY, MA, ED, and NL had slightly low scores on memory span tasks that involved 

production, suggesting a slightly low capacity of phonological working memory. For MA, ED, 

and NL, we tested and found normal scores in phonological working memory tasks not 

involving verbal production, indicating that this capacity limit was specifically in the 

production-related phonological memory. This mild phonological working memory impairment 

did not seem to impact their speech: they performed well in naming and in nonword repetition, 

tasks that are typically sensitive to phonological working memory deficits (Friedmann et al., 

2013). A deficit in production-related phonological working memory (the phonological output 

buffer) sometimes causes substitutions of number words (Dotan & Friedmann, 2015). However, 

as we will see below, here this was not the case for any participant except UN. 

7.3.2. Experiment 7.1: Assessment of number reading 

The participants’ ability to process symbolic numbers was first assessed with a number 

reading task, which involves digit input and verbal output. 
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7.3.2.1. Method 

The participants read aloud a list of 120 Arabic numbers with 3, 4, 5, or 6 digits (30, 38, 47, 

and 5 items, respectively), in random order. The digit 0 appeared in 63 of the numbers, and the 

other numbers contained only the digits 2-9. EY read a different list of 316 numbers with 3, 4, 

or 5 digits (100, 84, and 132 items, respectively). The digit 0 appeared in 134 of the numbers, 

and the others contained only the digits 2-9. 

7.3.2.2. Results 

All participants had many errors in the number reading task (Table 7.4). The errors were 

classified as follows: transposition, or a digit order error, is a change in the relative order of 

digits (e.g., 1234 → 1324). In word reading, transposition errors are the hallmark of letter 

position dyslexia, a deficit in letter position encoding by the visual analyzer (Friedmann & 

Gvion, 2001; Friedmann & Haddad-Hanna, 2012, 2014; Friedmann & Rahamim, 2007; Kezilas 

et al., 2014; Kohnen et al., 2012). A similar deficit also exists in the visual analyzer of numbers 

(Friedmann, Dotan, & Rahamim, 2010; Chapter 8). 

A decimal shift is the production of a number word as if the corresponding digit was in a 

different decimal position (e.g., 2345 → “two thousand and thirty… sorry, three hundred and 

forty five” – in this example, the error was spontaneously corrected).  

It is important to point here to a crucial difference between decimal shift errors and digit 

order errors: Whereas both reflect situations where one or more digits appear in an incorrect 

decimal position, these are two different error types. Digit order errors are digit displacements 

that result in erroneous relative order of digits (which, in turn, causes erroneous order of the 

corresponding number words – e.g., 2345 → 2354). In contrast, decimal shifts are digit 

displacements that keep the relative order of digits (and hence do not result in erroneous order 

of number words).6 

The distinction between decimal shifts and digit order errors was demonstrated in our data 

by the finding of a double dissociation between the two error types: EY had only digit order 

errors, whereas MA, ED, NL, OZ, and UN had only decimal shift errors. This double 

dissociation indicates that the digit order errors and decimal shift errors have different cognitive 

                                                 
6 Some errors can arguably be classified both as an order error and as a decimal shift: this is the case when a non-
leftmost digit was transposed with zero (e.g., 3,405 → 3,045). These errors were rare (only 9 errors for all 
participants pooled together), and were classified as decimal shifts. 
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origins. In the following sections, we confirm and clarify this dissociation and its implication 

for the number reading model. 

Decimal shift errors are especially interesting when they occur in the leftmost digits of the 

number (e.g., reading 234 as 2034, 2304, or 2340) – hereby, first-digit shifts. Such errors may 

indicate that the participant was processing the number structure incorrectly. For example, the 

above example may originate in the 3-digit number 234 being processed as if it has 4 digits. 

Decimal shifts were therefore analyzed by their position in the target number. 

Table 7.4. Percentage of errors in number reading (Experiment 7.1). EY had many transpositions, 

without decimal shifts. MA, ED, NL, OZ, and UN had many decimal shift errors, with only few 

transpositions. HZ had many errors of both types. 

 Order Decimal shift Substitutions Thousand a All errors b 

HZ  18 +++  30 +++  2  0  46 *** 

EY  17 ***  0  2  0  27 *** 

MA  4  18 +++  0  0  20 *** 

ED  3  17 +++  1  6  23 *** 

NL  5  14 +++  2  1  23 *** 

OZ  2  22 +++  3  13 +++  32 *** 

UN  1  24 +++  17 +++  15 +++  44 *** 

Controls (SD) 0.5 (0.7) 1.1 (1.1) 0.7 (0.8) 0.9 (1.3) 2.8 (1.3) 

EY Controls (SD) c 2.1 (1.5) 0.03 (0.1) 2.2 (2.3) 0 6.6 (4.3) 

Comparison to the control group:  *** p ≤ .001        +++ Errors ≥ 7%, control group ≤ 2% errors 
a  The rate of errors related with the decimal word "thousand" was counted out of the 52 numbers 

that contained the word “thousand” (5 or 6 digits). 
b The percentage of items with any error. 
c EY read a different list of numbers. Her control group had more errors than the other control 

group, perhaps because they saw each number for 400 ms (like EY) whereas the other control 

group had unlimited exposure. 

There were also errors related with the decimal word "thousand" (in 5- and 6-digit numbers): 

omission of the word "thousand" or addition of an excessive "thousand". Last, there were 

substitutions of a digit by another digit (e.g., 234 → 294). 

The participants showed different error patterns: HZ and EY had a high rate of digit order 

errors; all participants but EY had many decimal shift errors; UN and OZ, and to a lesser extent 

ED, had errors in the decimal word "thousand"; and UN had many substitution errors. 

Importantly, even when making mistakes, participants rarely produced invalid number names 
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(e.g., 2030 → “two thousand and three thousand” or “two, thirty”): none of them produced more 

than 2 invalid number names in this task. 

7.3.2.2.1. Digit order errors 

Digit order errors may result from impaired encoding of digit order by the visual analyzer. 

Note that according to the model in Fig. 7.1, different visual analyzer sub-processes encode the 

order information of different digits: the order of 1-9 are encoded by the digit order encoder, 

whereas the presence of 0 and its positions are encoded by another, dedicated process, as part 

of extracting the number’s decimal structure. A spared 0-detector could potentially compensate 

for an impaired digit order encoder if the number has 0. To examine this, we analyzed the order 

errors of HZ and EY (the two participants who had order errors) in numbers with or without 0. 

EY had 25.8% order errors in numbers that included only the digits 2-9, but only 6.0% order 

errors in numbers that included 0 (χ2 = 19.58, one-tailed p < .001). This suggests that she had a 

selective impairment in digit order encoding, yet this impairment spared the encoding of the 

positions of 0. In contrast to EY, HZ’ order errors in numbers with 0 (35%) were as frequent as 

in numbers that included only the digits 2-9 (46%; χ2 = 1.49, one-tailed p = .11), suggesting that 

her impairment was not as selective as EY’s: she was impaired both in the digit order encoder 

and in the 0 detector. 

7.3.2.2.2. Decimal shift errors 

All participants except EY had decimal shift errors. Some decimal shifts involved omissions 

of digits and number words, and in other cases a zero was omitted (so no word was omitted). 

Participants usually self-corrected their decimal shift errors (e.g., 2345 → “two thousand and 

thirty… sorry, three hundred and forty five”: 85% self-corrections for HZ, 100% for the other 

participants, but UN self-corrected only 32% of these errors. We assume that the spared digit 

identity encoding of all participants (except UN) served them as a cue to detect their mistake. 

Table 7.5 shows decimal shift errors according to their position in the target number: shifts 

of the leftmost digit or digits (e.g., 4,320 → 40,320 or 432), shifts of the first digits of the second 

triplet (e.g., 4,320 → 4,032), or shifts of other digits (e.g., 4,320 → 4,302). The table clearly 

shows that decimal shift errors were most frequent in the leftmost digits. We examined whether 

the erroneously produced number had more or fewer digits than the target number (rightmost 

columns in Table 7.5). No clear tendency was found – “longer” and “shorter” errors did not 

significantly differ for any of the participants (Binomial test, z ≤ 1.25, two-tailed p ≥ .21). 
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Table 7.5. Decimal shift errors in number reading, classified by the decimal position of the 

target digit. For each participant, most of the errors occurred in the first (leftmost) digits. The 

table shows raw number of errors in reading 120 numbers in Experiment 7.1, and 

percentages out of the total number of errors. 

 Position of decimal shift  

First-digit-shift made 

the number… a 

  First digit of  

2nd triplet 

  

Sample error in 

target=12345 → 

Leftmost Other  

120,345 12,034 12,304  Longer Shorter 

HZ 33 (92%) 3 (8%) 1 (3%)  13 14 

MA 18 (82%) 4 (18%) 0  9 7 

ED 20 (100%) 0 0  11 5 

NL 14 (82%) 4 (24%) 0  5 7 

OZ 17 (65%) 10 (38%) 1 (4%)  6 8 

UN 22 (76%) 6 (21%) 1 (3%)  6 11 

a In the two right columns, the numbers sum to less than the total number of first-digit-shift 

errors because the longer/shorter direction of some errors was ambiguous. 

7.3.2.3. Discussion of Experiment 7.1 

All the participants showed impaired oral reading of numbers, yet they showed different 

types of errors in number reading. Two participants – HZ and EY – had high rates of digit order 

errors. These errors may originate either in the visual analyzer, which encodes the digit order, 

or in verbal production processes. In Section 7.3.3 we assess the exact locus of deficit underlying 

the order errors.  

EY’s order errors were almost absent from numbers that included the digit 0. Our 

explanation to this pattern is that EY's impairment selectively disrupted the processing the digit 

order, but the positions of 0 are processed by another mechanism, which was not impaired for 

EY. This issue is systematically examined in Section 7.3.4. 

All participants except EY had many decimal shift errors. These errors were not uniformly 

distributed across all decimal positions – most of them occurred in the leftmost digits. This 

pattern may have two explanations. One possibility is that the participants processed the number 

length incorrectly, i.e., they processed numbers (e.g., 4,320) as if they had more digits (reading 

it as 43,200) or fewer digits (432). Alternatively, the participants may have grouped the digits 

incorrectly to triplets (e.g., as 43-20 rather than 4-320). Under both interpretations, these first-

digit shift errors indicate a deficit in a dedicated mechanism that handles the number structure. 
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The reading task, however, cannot indicate whether this deficit was in the visual analysis or in 

the production stage. We further investigate the origin of these errors in Section 7.3.5. Note that 

a tendency to err in the leftmost digits is unlikely to result from a plain memory difficulty: serial 

recall tasks typically show better recall of the first items in the list (Baddeley, 1968; Gvion & 

Friedmann, 2012; Hanten & Martin, 2000; Jahnke, 1965).  

OZ and UN, and marginally ED too, had errors related with the decimal word “thousand”, 

e.g., reading “12345” as “twelve, three hundred and forty five”. In the Discussion of this chapter, 

we propose a possible explanation of these errors. 

Last, UN had many digit substitution errors. We will show in the next sections that these 

substitutions resulted from a deficit in the verbal output, and in the Discussion of this chapter 

we discuss his locus of deficit in more detail. No other participant had many substitution errors, 

indicating that they had no deficit in processing digit identities – neither in visual analysis nor 

in verbal production. 

7.3.3. Impaired encoding of digit order in the visual analyzer 

HZ and EY had many digit order errors in number reading, indicating a digit order 

processing deficit. To identify the functional locus of this deficit, we administered several tasks 

sensitive to digit order information in different processing stages. To tap the encoding of digit 

order by the visual analyzer, we used tasks with visual digit input and without verbal output. To 

tap the use of digit order information by the verbal production system, we used tasks with verbal 

number production and without visual digit input. A digit-order encoding deficit in the visual 

analyzer should cause order errors in the visual input tasks but not in the verbal production tasks. 

The results of each task are reported here in full, including decimal shift errors, but these 

errors will be discussed only below, in Section 7.3.5. 

7.3.3.1. Input tasks 

We administered three tasks that tap digit-order encoding within the visual analyzer: 

sequence identification, same-different decision, and number matching. 

7.3.3.1.1. Experiment 7.2: Sequence identification 

7.3.3.1.1.1. Method 

The participants saw 4-digit strings printed on paper, and were asked to circle strings that 

consisted of only consecutive digits (e.g., 3456). In these consecutive strings, digits always 
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appeared in ascending order. The non-consecutive strings were derived from a consecutive 

string either by transposing two adjacent digits (e.g., 3546) or by substituting a digit (e.g., 3496). 

A digit-order encoding deficit in the visual analyzer should cause a difficulty in the digit-

transposition stimuli but not in the digit-substitution stimuli. 

The task included 100 consecutive sequences and 100 non-sequence digit strings: 53 digit-

transposition strings and 47 digit-substitution strings. No number included 0 or 1. EY performed 

a computerized version of this task, with 150 consecutive-digit strings, 75 transposition strings, 

and 75 substitution strings: each stimulus was presented centered on the computer screen for 

400 ms, and she clicked on one of two buttons with the mouse. 

7.3.3.1.1.2. Results 

HZ and EY had significantly more errors than the control group in the transposition stimuli 

(Table 7.6), and had more errors in the transposition stimuli than in the substitution stimuli  

(χ2 = 62.21 for HZ, 24.0 for EY; two-tailed p < .001 for both). In the other stimulus types – 

substitution stimuli and sequence stimuli – they performed like the control group. Because the 

task involved the visual analyzer but not verbal production of numbers, these results reaffirm 

that HZ and EY had a digit-order encoding deficit in the visual analyzer. 

OZ showed a similar pattern of errors – more errors in transposition stimuli than the control 

group, and more than his own errors in substitution stimuli (χ2 = 6.11, two-tailed p = .01). 

However, his transposition error rate was significantly lower than HZ’s and EY’s (χ2 > 5.55, 

two-tailed p < .02), and he had no transposition errors in the number reading task. Thus, it seems 

that he did not have a digit-order encoding deficit, or at most – had a mild one. The other 

participants (MA, ED, NL, UN) performed well in all stimulus types, confirming that their digit 

order encoding in the visual analyzer, as well as their digit identity encoding, were intact.  

7.3.3.1.2. Experiment 7.3: Same-different decision 

To further assess the visual analyzer without verbal production, participants were shown 

pairs of numbers and judged whether the numbers in each pair were identical or not. A digit-

order encoding deficit in the visual analyzer should create a difficulty in this task if the two 

numbers in a pair differ only in the order of digits. 

7.3.3.1.2.1. Method 

The participants saw 144 pairs of 4-digit numbers printed on paper, and were asked to circle 

pairs with two identical numbers. These were 50% of the pairs. In the remaining pairs, the 
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second number was derived from the first number by transposing two adjacent digits  

(36 transposition pairs, e.g., 1234-1324) or by substituting a digit (36 substitution pairs, e.g., 

1234-1237). Transpositions and substitutions were evenly distributed across all decimal 

positions. No number included 0 or 1. EY performed a computerized version of this task – each 

pair was presented on screen for 1300 ms, and she responded by clicking one of two buttons 

with the mouse. Her task included 120 identical pairs, 75 transposition pairs (50 unit-decade,  

20 decade-hundred, and 10 hundred-thousand), and 75 substitution pairs (25, 25, 15, and 10 

items with a substitution in the unit, decade, hundred or thousand digit, respectively). UN did 

not perform this task. 

7.3.3.1.2.2. Results 

Table 7.6 shows the results in this task. Notably, the transposition pairs were significantly 

harder than the substitution pairs even for the control group (paired t(23) = 3.43, one-tailed  

p = .001, Cohen’s d = 1.43). Namely, even unimpaired individuals make some transposition 

errors in this task. 

Except MA, all participants had significantly more transposition than substitution errors  

(χ2 > 5.06, one-tailed p ≤ .01), and significantly more transposition errors than the control group. 

However, the transposition error rate was the highest for HZ and EY – each of them had 

significantly more transpositions than MA, ED, NL, and OZ (χ2 > 15.91, two-tailed p < .001), 

whose error rates were similar (no pairwise differences between MA, ED, and OZ, χ2 < .84, 

two-tailed p > .36; and NL had fewer errors). HZ and EY were also the only participants whose 

error rates exceeded those of the worst-performing control participant. 

HZ also had many substitution errors, but her predominant error type was still transpositions: 

they were more frequent than her substitutions (χ2 = 31.7, one-tailed p < .001), and they all went 

undetected by her, whereas she self-corrected all but 5 substitution errors. 

The same-different decision task does not require verbal production of numbers. Thus, HZ’s 

and EY’s high transposition error rates clearly indicate that they have a digit-order encoding 

deficit in the visual analyzer. The other participants had a more-moderate (even if significant) 

transposition error rate in this task. One possibility is that they had a milder digit-order encoding 

deficit. Another possibility, however, is that their transposition errors reflect the normal 

difference of difficulties between transposition pairs and other pairs, which was observed even 

in the control group, and was amplified for the participants due to a general difficulty in number 

reading or in memory. 
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Table 7.6. Error percentages in tasks that tap the visual analyzer (tasks that involve visual digit input but 

do not involve production of verbal numbers). HZ and EY had high rates of transposition errors. MA, ED, 

NL, and UN had lower transposition error rates. OZ had many transposition errors only in one task. 

Experiment 7.2 – sequence identification 

 Sequence Transposition Substitution  

HZ  1  83 ***  4 *  

EY  1  36 +++  4  

MA  1  0  0  

ED  3  4  0  

NL  4  2  0  

OZ  7  17 ***  2  

UN  6  4  0  

Controls (SD) 3.3 (3.9) 2.7 (3.4) 0  

EY Controls (SD) 0.9 (1.0) 1.3 (1.3) 0.1 (0.4)  

Experiment 7.3 – same-different decision 

 Equal Transposition Substitution  

HZ  1  100 ***  39 +++  

EY  0  63 +++  0  

MA  0  14 +  3  

ED  1  22 **  0  

NL  0  6  0  

OZ  0  19 **  3  

Controls (SD) 1.2 (2.1) 4.7 (5.5) 0.6 (2.3)  

EY Controls (SD) 0.1 (0.4) 1.9 (2.5) 0.4 (0.6)  

Experiment 7.4 – number matching 

 Equal Transposition Substitution  Number length 

HZ  6  19 +++  4  29 +++ 

MA  0  3  0  5 

ED  2  5  0  6  

NL  7  0  0  0 

OZ  6  2  0  2 

Controls (SD) 3.1 (2.7) 0.3 (0.6) 0.2 (0.4)   0.5 (0.8) 

Comparison with control group:  + p ≤ .1      * p ≤ .05      ** p ≤ .01      *** p ≤ .001 
             +++ Errors ≥ 7%, control group ≤ 2% 
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7.3.3.1.3. Experiment 7.4: Number matching 

In this variation of same-different decision, the participant was presented with a list of 

numbers and compared each number in this list to a fixed sample number. This task too involves 

visual digit input with no verbal output, so it taps the visual analyzer. The exact task design and 

stimulus selection were mainly motivated by considerations of diagnosing number length 

encoding impairments. These considerations will be explained in detail in Section 7.3.5.1. 

7.3.3.1.3.1. Method 

The task was designed as 10 blocks. In each block, the participants saw a sample number 

and 49 target numbers printed underneath. They were instructed to circle all targets that were 

identical with the sample number, working as accurately and quickly as possible. The sample 

numbers consisted of a digit that repeated 4 or 5 times, and one different digit in an interior 

position (e.g., 22322, 777747, etc.). Of the 490 target numbers, 191 were identical with the 

sample, 100 were derived from the sample by transposing two digits (777747-777477),  

100 were derived by adding/deleting a repeated digit (number-length difference, 228222-

22822), and 99 were derived by substituting the non-repeated digit (33533-33933). The numbers 

were printed on A4 paper, two blocks per sheet. EY and UN did not perform this task. 

7.3.3.1.3.2. Results 

Only HZ had significantly more errors than the control group in the transposition targets  

(Table 7.6). This further indicates that she had a digit-order encoding deficit in the visual 

analyzer, whereas MA, ED, NL, and OZ did not. 

7.3.3.1.4. Interim summary: Digit order errors in the visual input tasks 

The tasks described here, all of which specifically tap digit order encoding in the visual 

analyzer, showed a consistent pattern: EY and HZ had many digit order errors, whereas MA, 

ED, NL, and UN did not (except the same-different task, where they had transposition errors, 

but still significantly fewer than HZ and EY). This indicates that EY and HZ, but not the other 

participants, have a digit-order encoding deficit in the visual analyzer. The only inconsistent 

finding was OZ’s high rate of transposition errors in the sequence identification task (which was 

still much lower than EY’s and HZ’s). It is therefore possible that OZ too had a mild digit-order 

encoding deficit. 
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7.3.3.2. Output task: Number repetition – Experiment 7.5 

The participants performed a number repetition task, which involves verbal production 

without visual digit input. This task taps the phonological retrieval mechanisms of number 

words (Dotan & Friedmann, 2015; McCloskey et al., 1986). If the transposition errors result 

from a deficit in phonological retrireval, they should appear in this task too. The task may also 

expose a verbal production difficulty in other stages (e.g., the generation of number word frame), 

but not necessarily: in another study we observed a patient with a deficit in verbal production of 

numbers, who nevertheless managed to repeat numbers correctly, apparently by using various 

strategies (Chapter 9). 

7.3.3.2.1.1. Method 

The experimenter said aloud each number and the participant repeated it. HZ, MA, and ED 

repeated the 120 numbers from Experiment 7.1. UN’s digit span was very low, so he repeated 

120 numbers in which only 2 or 3 digits were non-zero. The numbers had 3, 4, 5, or 6 digits (22, 

39, 37, and 22 items per length, respectively). To allow for direct comparison of his number 

repetition with his number reading, in a separate session he also read the same numbers from 

paper. EY repeated 82 numbers – one block of 40 four-digit numbers, and another block of 42 

five-digit numbers. 

7.3.3.2.1.2. Results 

All participants had almost no digit order errors in the repetition task (Table 7.7). This 

suggests that HZ’s and EY’s digit order errors in number reading (which we saw in 

Experiments 7.1 - 7.4) did not originate in an impaired production process, and certainly not in 

impaired phonological retrieval.  

7.3.3.3. Interim summary: the assessment of digit order errors 

The results of the experiments above are clear: HZ and EY had “digit order dyslexia” – a 

digit-order encoding deficit in the visual analysis of Arabic numbers. They had high rates of 

digit order errors in all tasks that involved visual digit input – reading aloud, same-different 

decision, sequence identification, and number matching, but only few order errors in number 

repetition, a task that involved verbal output without visual digit input. HZ’s deficit was more 

severe. Indeed, this disturbed her in real life situations – e.g., she had a real difficulty when 

waiting in a bus station where both line 28 and 82 were stopping. 
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Table 7.7. Percentage of errors in the number repetition task (Experiment 7.5), which involved 

production of verbal numbers but did not involve visual digit input. The rate of digit order errors was 

low for all participants. 

Task  
Digit 

order 
1st digit 

shifts 
Decimal 

shifts 
Substi-

tutions 
Thousand 

errorsa 
All 

errorsb 

Number 

repetition 

HZ  1  0  0  3  0  4 

EY c  0  0  0  9  0  12 

MA  3  0  0  4  0  9 

ED  1  0  0  8  0  11 + 

NL  1  1  1  11 *  0  16 ** 

OZ  1  0  0  7  0  8 

UN c  0  13 +++  29 +++  27 +++  2  48 +++ 

Controls (SD) 1.1 (1.2) 0.5 (1.2) 1.1 (1.0) 3.6 (3.5)  0 4.6 (3.6) 

EY controls (SD) 1.5 (1.1)  0  0 5.4 (5.4)  0 6.6 (5.8) 

UN controls (SD) 0.1 (0.2) 0.1 (0.3) 0.1 (0.3) 0.4 (0.4)  0 0.6 (0.7) 

UN’s reading of the same stimuli    0  48  48  7  0  52 

Comparison to the control group: + p < .1    * p ≤ .05    ** p ≤ .01     
 +++ Errors ≥ 7%, control group ≤ 2% 

a  The rate of errors related with the decimal word "thousand" was counted out of the 52 numbers 

that had a sufficient number of digits (5 or 6). 
b The percentage of items with any error. 
c The stimuli lists of EY and UN were different from those of the other participants. 

 

MA, ED, NL, and UN had relatively few digit order errors in all tasks, indicating that they 

had intact digit order encoding in all stages. 

OZ had no digit order errors in the output-only tasks and in the number reading task, and 

relatively few digit order errors in two of the three input-only tasks, but he had many 

transpositions in third input-only task (sequence identification). Thus, he may have had a mild 

impairment in digit order encoding in the visual analyzer. 

7.3.4. Impaired encoding of 0 positions in the visual analyzer 

In Experiment 7.1, EY showed an interesting performance pattern: she had many digit order 

errors when reading numbers that included only the digits 2-9, but virtually no errors when 

reading numbers that included also the digit 0. This is an important finding, as it suggests the 

existence of another mechanism, separate from the digit order encoder, which selectively 

encodes the position of 0. Presumably, this mechanism was spared for EY, and this is what 

allowed her to avoid order errors when the number included the digit 0. We further tested this 
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dissociation using two experiments in which the presence of 0 in the number was carefully 

controlled. These experiments were administered to the two participants with digit-order 

encoding deficit, EY and HZ. 

According to Cohen and Dehaene’s (1991) model, a dedicated process encodes not only the 

positions of 0, but also of 1. To test this possibility, we also controlled for the presence of 1 in 

the number. Moreover, Cohen and Dehaene suggested that the importance of 1 is the verbal 

irregularity it creates when it appears in the decades position (it cues that the number should 

include an x-teen word). This may imply that 1 would have an effect only when appearing in 

the decades position. We therefore compared the participants’ performance in numbers where 

the digit 1 appeared in different positions. 

7.3.4.1. Experiment 7.6: reading numbers with 0, 1, or neither 

7.3.4.1.1. Method 

EY and HZ read 350 four-digit numbers: 100 numbers included the digit 0 in the hundreds 

or decades positions (x0xx and xx0x, 50 items per type), and 150 numbers included the digit 1 

(xxx1, xx1x, and x1xx, 50 items per type). Additional 100 control numbers included neither 0 

nor 1 and were derived from the xxx1 and xx1x numbers by substituting the digit 1 with a digit 

that was neither 0 nor 1 (xxx6 and xx3x). The 350 numbers were administered in random order 

in four blocks.  

In Experiment 7.1, transpositions with 0 (e.g., 2304 → 2034) were classified as decimal 

shifts. Here, to avoid any bias that may artificially reduce order errors in numbers with 0, we 

classified transpositions with 0 as order errors. 

7.3.4.1.2. Results 

Both participants had many digit order errors (Table 7.8). Importantly, EY had merely a 

single error in numbers with 0, more order errors in numbers with 1 (χ2 = 16.6, one-tailed  

p < .001), and even more order errors in numbers with neither 0 nor 1 (χ2 = 25.5, one-tailed  

p < .001), replicating the dissociation she showed in Experiment 7.1 between numbers with and 

without 0. Within numbers with 1, she made more order errors involving the digit 1 than order 

errors not involving 1 (χ2 = 4.62, one-tailed p = .02). Her performance was unaffected by the 

position in which the digit 1 appeared: she had similar digit-order error rates in xxx1 (14%), 

xx1x (20%), and x1xx (18%, χ2(2) = .54, two-tailed p = .76), and for each decimal position  
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of 1, the error rate in numbers with 1 was lower than in numbers with 2-9 (χ2 > 10.31, one-tailed 

p < .001).  

Table 7.8. Error percentages in Experiment 7.6 – reading aloud numbers with 0, with 1, or with only 

the digits 2-9. EY had fewer order errors in numbers with 0/1 than in numbers without these digits. 

HZ showed no such sensitivity to 0/1. 

  Numbers with 0 Numbers with 1 Numbers with only 2-9 

EY Order errors  1  17 47 

  Transpositions with 0/1  0  6  

  Only in the digits 2-9  1  13  

 All errors a  2  20 48 

HZ Order errors  59  35 42 

  Transpositions with 0/1  50  18  

  Only in the digits 2-9  10  19  

 All errors a  62  42 45 

a The percentage of items with any error. 

HZ did not show this kind of sensitivity to 0 and 1. In fact, she showed the opposite pattern: 

more digit order errors in numbers with 0 than in numbers without 0, 1 (χ2 = 5.78, two-tailed  

p = .02). Table 7.8 shows that this pattern resulted from her high rate of transpositions of 0 with 

another digit (e.g., 4302 → 4032), suggesting that at least some of these errors were in fact 

decimal shifts rather than order errors. This interpretation is supported by two findings: first, 

when excluding transpositions of 0 with another digit (and correspondingly excluding from the 

control numbers transpositions of 3 or 6 with another digit), HZ showed similar order error rates 

in numbers with 0 (10%) and without 0,1 (12%, χ2 = 0.2, one-tailed p = .32). Second, when we 

compared HZ’s transpositions of 0 with another digit against her transpositions in the same 

decimal positions in the numbers without 0-1, we observed more transpositions with 0 (50% 

versus 21%, χ2 = 18.36, p < .001). 

The different patterns exhibited by HZ and EY cannot be explained by the slightly different 

methods of stimulus presentation (EY read the numbers on a computer screen with limited 

exposure, HZ read them from paper): HZ’s error pattern did not change when she re-read the 

Experiment 7.6 stimuli under EY’s conditions (from a computer screen with 400 ms exposure). 

Crucially, HZ’s and EY’s different stimulus presentation methods cannot explain the main 

finding in the present experiment – the effect of 0 and 1 on EY's reading. 
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The results can also not be attributed to visual differences between 0 and 1 and the other 

digits. According to such a visual account, what helped EY was visual parameters such as the 

unique shape of 0 (circle) and 1 (line). To rule out this explanation, we administered EY a 

control experiment in which she saw a circle-shaped character that was not zero. We capitalized 

on EY’s letter position dyslexia in word reading, and on the fact that the Hebrew letter Samekh 

 has a circle-like shape, similarly to the English letter O. EY read a list of 51 (/pronounced /s ,ס)

words with the letter ס as a middle letter (because letter position dyslexia affects only middle 

letters), mixed with 51 words without ס. The words were presented on the computer screen for 

400 ms in Guttman-Yad font (ס). The visual account predicts that EY would have fewer 

transposition errors in words with ס than in words without ס, but this was not the case: she had 

24% migration errors in words with ס and 25% in words without ס (χ2 = 0.50, 1-tailed p = .41). 

7.3.4.2. Experiment 7.7: same-different decision in numbers with 0, 1, or 

neither 

Experiments 7.1 and 7.6 showed that EY can read numbers without digit order errors if the 

number includes 0. As we saw in Section 7.3.3, EY’s digit order errors originate in a visual 

analyzer deficit. We therefore hypothesized that her ability to avoid digit order errors also 

originates in the visual analyzer. To examine this hypothesis, we administered her a same-

different decision task and manipulated the presence of 0 in the numbers. This task involves 

visual input but no verbal output, and as demonstrated in Experiment 7.3, EY’s impaired digit 

order encoder fails in distinguishing between numbers that differ in the order of digits. If her 

visual analyzer can avoid digit order errors in numbers with 0, EY should be able to tell apart 

transposed pairs that contain 0. HZ performed the task too, as control. 

7.3.4.2.1. Method 

HZ and EY saw 300 pairs of 4-digit numbers and decided, for each pair, whether the two 

numbers were identical (143 pairs) or differed in the order of two adjacent digits (157 pairs). Of 

the transposition pairs, 53 pairs contained the digit zero, 51 pairs contained the digit 1, and 53 

pairs contained only the digits 2-9. Both 0 and 1 could appear in the units (19%), decades (15%) 

or hundreds (66%) position. The numbers in each pair appeared next to each other on the 

computer screen. The rest of the methodological details were like in the same-different 

experiment described above (Experiment 7.3). 
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7.3.4.2.2. Results 

Similarly to number reading (Experiments 7.1, 7.6), EY had significantly fewer errors in 

detecting transpositions when the numbers included the digit 0 than when they included only 

the digits 2-9 (Table 7.9, χ2 = 16.5, one-tailed p < .001). However, unlike Experiment 7.6, the 

existence of 1 in the number did not improve EY’s performance (χ2 = 0.27, one-tailed p = .30). 

The specific position of the digit 0 or 1 had no significant effect on EY's error rate  

(Fisher's p = .44 for 0, Fisher's p = .34 for 1).  

HZ did not show a facilitating effect of 0 or 1 compared to the 2-9 pairs (χ2 ≤ 0.66,  

one-tailed p ≥ .21), replicating her performance pattern in the reading aloud task. 

Table 7.9. Percentage of errors in same-different decision 

(Experiment 7.7). EY had fewer errors in numbers with 0 than in 

other numbers, whereas HZ showed no sensitivity to 0. 

 Pairs differing in digit order  

 Only 2-9 With 1 With 0 Identical pairs 

HZ  68  73  60 20 

EY  47  41  11 3 

7.3.4.3. Interim summary: the assessment of 0-position encoding 

The two number reading Experiments (7.1, 7.6) clearly show that EY had a highly selective 

deficit in number reading: she had difficulty in digit order encoding, but this difficulty had 

almost no impact on numbers that included the digit 0. A similar facilitating effect of 0 was 

observed in a task with visual input and no verbal output (same-different, Experiment 7.7). Our 

best explanation to this pattern is that the visual analyzer has a dedicated sub-process that detects 

the presence of 0 in the number and encodes its positions, as part of the decimal structure 

extraction (Fig. 7.1). EY had selective impairment in the digit-order encoding mechanism, but 

her 0-detector was still intact. This allowed her, for numbers with 0, not only to identify the 

position of 0 but also to use it as pivot for ordering the remaining digits. HZ was impaired in 

both processes, so the presence of 0 in the number did not help her. 

The findings were slightly different with respect to the digit 1. The presence of 1 in the 

number helped EY to avoid digit order errors in reading aloud but not in the input-only task 

(same-different). This suggests that 1 has a special status in the speech production stage but not 

in the visual analysis stage. We further elaborate on the implications of this finding in the 

Discussion of this chapter. 
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7.3.5. Impaired processing of the number’s structural information 

In Experiment 7.1, all participants except EY had many decimal shift errors. These errors 

occurred mainly in the leftmost digits, a pattern that can potentially result from impairments in 

several possible sub-processes, all of which handle the number’s decimal or verbal structure. In 

the present section we identify, per participant, the locus of deficit underlying these first-digit 

shift errors. One possibility is that the errors result from erroneous encoding of the number 

length in the visual analyzer, which would make participants produce a number as if it had fewer 

digits or more digits (e.g., 4,320 → 43,200). Section 7.3.5.1 examines this possibility. A second 

possibility, examined in Section 7.3.5.2, is that the errors result from impaired triplet parsing in 

the visual analyzer (e.g., 4320 → 43,20 → “forty three, twenty”). A third possibility, assessed 

in Section 7.3.5.3, is that first-digit shift errors result from impaired detection of 0’s and their 

positions: ignoring a 0 or encoding an excessive 0 would change the perceived number of digits 

in the number (e.g., 4,320 → 43,200), and transposing a 0 would shift the decimal position of 

the transposed non-0 digit (e.g., 4,320 → 4,302). Finally, in Section 7.3.5.4 we examine the 

possibility that the decimal shift errors result from impaired generation of number word frames 

in the verbal production stage. Such impairment could potentially distort the number length, the 

positions of 0’s, or the number’s triplet structure. 

7.3.5.1. Can decimal shift errors result from impaired number-length encoding 

in the visual analyzer? 

The participants performed two visual tasks without verbal production, which were sensitive 

to number length: same-different decision and number matching. If the participants have 

impaired number-length detection in the visual analyzer, they should have difficulties in these 

tasks. 

Both tasks required the participants to judge whether visually presented numbers were 

identical or not. Pilot experiments suggested a major methodological challenge in designing this 

kind of tasks: participants often rely on alternative strategies rather than on number length 

information. For example, if we ask whether 1234 and 12345 were identical, the participant 

could detect the difference by relying on the digit identities (only the second number has “5”). 

In the pair “1234 =? 12343”, they could rely on the order between 3 and other digits. Thus, pairs 

such as 1234-12345 and 1234-12343 could yield good performance even if number length 

encoding is impaired. To prevent these alternative strategies, we used numbers in which all 

digits but one were identical (e.g., 99949). Number length was manipulated by changing the 
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number of instances of the repeated digit, e.g., 99949-9949: both numbers contain only 4’s and 

9’s and in the same relative order, so they are indistinguishable by digit identity and digit order. 

In the supplemental online material, we discuss more fine-grained methodological aspects of 

these tasks. 

7.3.5.1.1. Experiment 7.8: same-different decision 

7.3.5.1.1.1. Method 

The participants saw 240 pairs of numbers with 3-6 digits, and decided whether the two 

numbers in each pair were identical or not. In all numbers, one digit was non-9 and the other 

digits were 9. There were 120 identical pairs and 120 different pairs. In the different pairs, the 

second number was derived from the first by adding or removing a single 9 digit (e.g., 99949-

9949, or 99949-999499, 60 pairs), or by substituting the non-9 digit (e.g., 99949-99979,  

60 pairs). The two numbers appeared in the center of the screen one after another for 1000 ms 

each, with a 500 ms delay between them. The participants answered using two keyboard keys. 

EY did not perform this task. HZ had very high error rates in all stimulus types, suggesting 

impulsivity, so she later performed the task again while answering verbally rather than with the 

keyboard. We report her performance in both response methods. 

7.3.5.1.1.2. Results 

If a participant has a selective deficit in the decimal structure analyzer, his error rate in the 

length-differing pairs should be higher than the control group's. It should also be higher than the 

participant's own error rate in the substitution pairs. This pattern was observed for HZ and MA 

(Table 7.10): they had significantly more errors than the control group in the length-differing 

pairs (HZ had more errors in all stimulus types, indicating a general difficulty in this task, but 

the difference was most evident in the length-differing pairs). They also had more errors in 

length-differing pairs than in substitution pairs (HZ: χ2 = 13.1, one-tailed p < .001; MA: χ2 = 

9.84, one-tailed p < .001). The control group had similar error rates in the length-differing pairs 

and the substitution pairs (paired t(19) = 0.62, two-tailed p = .54, Cohen’s d = 0.28). 
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Table 7.10. Percentage of errors in Experiment 7.8 – same-different decision. If number-length 

detection in the visual analyzer is impaired, the participant’s error rate in length-differing pairs 

should be higher than their error rate in the other types of pairs, and higher than the control group's 

error rate in length-differing pairs. Only HZ and MA showed this pattern. 

 Length difference Digit substitution Identical 

HZ (keyboard answer)  70 +++  23 ***  15 *** 

HZ (verbal answer)  18 +++  8 **  3 

MA  20 +++  2  5 + 

ED  5   7 *  5 + 

NL  0  0  1 

OZ  3  2  8 *** 

UN  22 +++  37 ***  18 *** 

Control group (SD) 1.9 (2.4) 2.3 (2.0) 2.5 (1.5) 

Comparison to control group:  + p < .1     * p < .05     ** p < .01     *** p ≤ .001 
            +++ Errors ≥ 7%, control group ≤ 2% 

The other participants – ED, NL, OZ, and UN – did not show this pattern of results. None 

of them had more errors in length-differing pairs than in substitution pairs, and none had more 

length errors than the control group (UN did have more errors than the control group, but in all 

pair types rather than just in the length-differing pairs). These findings indicate that HZ and MA, 

but not ED, NL, OZ, and UN, had a deficit in encoding number length encoding in the visual 

analyzer. 

7.3.5.1.2. Number matching 

This task, described in Section 7.3.3.1.3 (Experiment 7.4), required comparing several 

numbers to a fixed sample number. The number could be identical with the sample, or differ 

from it in the number of digits (number length), the order of digits, or the identity of digits. 

People with a deficit in number length encoding in the visual analyzer are expected to show a 

higher error rate in length-differing targets than in substitution targets. We also expect their error 

rate in the length-differing targets to be higher than the control group's. Such a pattern was 

observed only for HZ (Table 7.6; length-differing targets vs. substitution targets: χ2 = 11.05, 

one-tailed p < .001). MA and ED showed a partial match to this pattern: they had more errors 

in length-differing targets than in substitution targets (χ2 > 5.08, one-tailed p ≤ .02), but their 

length error rate did not exceed the 7% criterion that we set as the threshold to count as 

significantly worse than the control group. NL and OZ did not have many length-related errors 

(p ≥ .25 for length vs. substitution, and neither had more length errors than the control group). 
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Thus, this task indicates that HZ, and perhaps MA and ED too, had impaired number length 

encoding in the visual analyzer, but NL and OZ did not. 

7.3.5.1.3. Interim summary: first-digit shift errors in the visual analyzer 

We examined number-length encoding in the visual analyzer using two tasks. In each task, 

we used two criteria for impaired performance: having more number-length errors than other 

error types, and having more number-length errors than the control group. This resulted in four 

statistical tests for the participants’ number length encoding (two tasks, two tests per task). HZ 

had a high rate of number-length errors according to all four tests, MA had high rates of number-

length errors according to three tests, and ED showed a high rate of number length errors only 

in one test. The remaining participants – NL, OZ, and UN did not show high rates of number-

length errors in either of the tasks. These results indicate that HZ and MA, but not the other 

participants, had impaired encoding of number length. Both tasks tapped the visual analyzer, 

indicating that this was the locus of the number-length encoding deficit. 

7.3.5.2. Can decimal shift errors result from impaired triplet parsing in the 

visual analyzer?  

Another possible reason for making first-digit shift errors is a deficit in triplet parsing. For 

example, if the digits of 54321, which should be grouped as 54,321, were grouped as 543,21, 

the result would be a first-digit shift – saying “five hundred” instead of “fifty”. We reasoned 

that if this was the source of the participants’ decimal shift errors in number reading, the errors 

should disappear if we provide them with explicit cues about the correct way to parse the number 

into triplets. As a parsing cue, we used a standard comma separator between the hundreds and 

thousands digits. 

7.3.5.2.1. Experiment 7.9: Reading numbers with a comma separator 

The participants read aloud the 120 numbers that were presented in Experiment 7.1, but 

unlike Experiment 7.1, here they were presented with a comma separator between the thousands 

and hundreds digits (e.g., 54,321, whereas in Experiment 7.1 it was 54321). We reasoned that 

the comma separator would provide a bypass strategy for parsing triplets if the participant’s 

visual analyzer had difficulties in doing that. If a participant’s decimal shifts in reading aloud 

originate in a triplet parsing deficit, the comma separator should provide him with a visual cue 

to improve the parsing, and the participant should therefore make fewer first-digit shift errors 

here than in Experiment 7.1. The comma separator may also help participants with impaired 
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number-length encoding in the visual analyzer, because this visual cue could help estimating 

the number length. In contrast, the visual manipulation of adding a comma is not expected to 

help participants whose first-digit shift errors originate in impaired production processes. We 

also hypothesized that the comma separator would have no effect on digit-order encoding, and 

consequently would not decrease the rate of transpositions. 

Table 7.11. Error percentages in reading numbers with 4-6 digits with comma separator (e.g., 

12,345, Experiment 7.9) and without comma (12345, Experiment 7.1). The visual manipulation of 

adding the comma, which presumably affects only the visual analyzer, improved the reading of HZ, 

MA, and ED, but did not help NL, OZ, and UN. 

 With comma (Experiment 7.9)  Without comma (Experiment 7.1) 

 1st-digit shift Order Thousanda All  1st-digit shift Order Thousanda All 

HZ  8 *** 18 0 51  33 21 0 52 

MA  4 *** 4 4  13 *  20 4 0 24 

ED  0 *** 2 1  3 ***  21 3 6 28 

NL  9 3 0 16  11 4 1 20 

OZ  16 0 3 29  19 1 8 39 

UN  18 1 16 39  18 1 8 49 

Comparison between conditions:  * p ≤ .05    *** p ≤ .001 
a  The rate of errors related with the decimal word "thousand" was counted out of the 52 

numbers that had a sufficient number of digits (5 or 6). 

Table 7.11 compares the participants’ reading with a comma separator versus their reading 

without it, using McNemar test. Only the 90 numbers that can include a comma (4-6 digits) 

were analyzed. The addition of comma separator clearly reduced the first-digit shift error rate 

for HZ, MA, and ED, but not for NL, OZ and UN. This indicates that the deficit of HZ, MA, 

and ED was in the visual analyzer, either in encoding the number length or in parsing the triplets. 

Because we already concluded above that ED does not have a number-length encoding deficit 

in the visual analyzer, the present results indicate that she had impaired parsing of triplet in the 

visual analyzer. 

NL, OZ, and UN did not gain from the addition of a comma separator. This finding can be 

interpreted in two ways: either their deficit was not visual, or they had a double deficit – a visual 

deficit and another deficit – and the second deficit made them err even when the numbers were 

presented with a comma separator. We resolve this ambiguity later below (Section 7.3.5.4.3) by 

considering the results in the present task in conjunction with other tasks. 
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HZ’s performance in this task is interesting also from another respect. The addition of a 

comma separator significantly decreased her first-digit shift errors but not her digit order errors. 

The difference between the comma’s effects on the two error types was significant (an analysis 

of the Experiment x Error Type x Success contingency table showed a three-way interaction: 

χ2(4) = 7.64, one-tailed p = .05). This within-participant dissociation between order errors and 

first-digit shifts further supports our earlier conclusion that order errors and first-digit shift errors 

originate in two distinct processes. 

7.3.5.3. Can decimal shift errors result from impaired 0 detection in the visual 

analyzer? 

Another possibility is that the decimal shift errors result from impaired 0 detection in the 

visual analyzer. According to this view, decimal shifts occurred because the participants 

incorrectly encoded the presence of 0 in the number: ignoring a 0, or encoding an excessive 0, 

results in encoding a number as having too many or too few digits. In essence, the argument 

here is very similar to the possibility of a number-length encoding deficit, but it assumes that 

the change in number length did not result from a number length error per-se, but is the indirect 

result of incorrect detection of 0’s. We hereby examine several specific predictions derived from 

this view. As we shall see, none of the participants fulfilled these predictions. 

First, if a person’s decimal shifts result from a visual encoding deficit, that person should 

show more decimal shift errors in numbers with 0 than in numbers without 0. In the number 

reading task (Experiment 7.1), no participant showed this pattern (Table 7.12).  

 
Table 7.12. Error percentages of decimal shift errors in Experiment 7.1 (number reading). Contrary to 

the view that these errors result from erroneous encoding of 0 positions, no participant showed:  

(a) more decimal shifts in numbers with 0; or (b) a tendency of first-digit shift errors to lengthen 

numbers without 0 (which could be explained as an addition of 0) rather than to shorten these 

numbers (which is unexplained as a 0 effect). 

 Decimal shifts in numbers…  Numbers without 0: first-digit-shifts resulted in… 

 with 0 without 0  longer number shorter number 

HZ 25 30  11 17 

MA 9 21  10 11 

ED 14 19  10 10 

NL 9 14  5 10 

OZ 16 14  6 6 

UN 16 21  6 11 
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The second prediction starts with recognizing that an impaired 0 detector can cause a first-

digit shift error only by omitting a 0 or encoding an excessive 0. If the target number does not 

include 0, it is obviously impossible to omit a 0, so an impaired 0 detector can only create first-

digit shift errors that make the number longer. A clear prediction follows: in numbers without 

0, such a person would have more first-digit shifts that make the number longer than the target 

and fewer shifts that make the number shorter than the target. This prediction was no affirmed 

for any of the participants – in fact, for all participants, the number of “longer” errors was 

smaller than or equal to the number of “shorter” errors (Table 7.12). 

Third, a person whose decimal shifts originate in impaired 0 encoding should perform well 

in tasks that do not include numbers with 0, e.g. the number comparison tasks that we used – 

number matching and same-different (Experiments 7.4 and 7.8). Contrary to this prediction, MA 

had number-length errors in Experiment 7.8, and HZ had such errors both in Experiment 7.4 

and in Experiment 7.8. These errors cannot be explained by a 0-encoding deficit – they can be 

explained only as a number-length encoding deficit. 

Finally, explaining decimal shifts as resulting from bad 0 detection does not explain why, 

for some participants, decimal shifts were nearly eliminated by the addition of a comma 

separator (Experiment 7.9), because there is no clear reason why the comma separator should 

facilitate the detection of the presence of 0 in the number or the detection of 0 positions 

(especially given that the comma did not facilitate the order encoding for other digits). 

All these findings indicate that erroneous 0 detection does not account for the decimal shift 

errors of any of the participants in this study. However, it is still possible that other individuals, 

who may have a selective deficit in 0 detection in the visual analyzer, would make decimal shift 

errors as a result. In such cases, we would expect an error pattern different from the ones 

observed for our participants: (1) there would be more decimal shift errors in numbers with 0 

than in numbers without 0; (2) only lengthening errors would occur in numbers without 0;  

(3) the person would succeed in the number comparison tasks that we used here; and  

(4) the addition of a comma separator would not reduce the number of decimal shifts. Finally, 

our findings still allow the possibility of a double deficit – i.e., participants in this study, whose 

decimal shifts are explained by another impairment, may still have a 0 detection deficit on top 

of that impairment. 
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7.3.5.4. Can decimal shift errors result from impaired generation of number 

word frames in verbal production? 

The last locus of deficit we considered as a possible origin for first-digit shift errors was the 

generation of number word frames in verbal production. Generation of incorrect frames could 

result in decimal shift errors of all kinds, including first-digit shifts. We assessed this generation 

process with three tasks that allow for first-digit shift errors. Two tasks – number repetition and 

multiply/divide by 10 – involved verbal production of number words that were not presented 

visually. We predicted that individuals with impaired generation of number word frames would 

perform poorly in these tasks, but individuals with a selective deficit in the visual analyzer would 

perform well. The third task (Experiment 7.11) was number reading, with a manipulation that 

was designed to improve the reading of participants with impaired generation of number word 

frames. 

7.3.5.4.1. Number repetition  

The number repetition task was already described above (Section 7.3.3.2, Experiment 7.5). 

All participants but UN did not make any first-digit shift errors in this task, nor did they have 

other decimal shifts (Table 7.7). However, this does not necessarily indicate good processing of 

number length in the verbal production stage: the number repetition task may be too easy and 

may allow for alternative strategies – e.g., because the participants hear the number’s verbal 

structure and do not have to produce it on their own. Indeed, in another study we observed a 

patient with a deficit in verbal production of numbers, who nevertheless managed to repeat 

numbers correctly (Chapter 9). 

UN was the only participant who had many first-digit shift errors in number repetition, 

suggesting he had a deficit in verbal production. Unlike the reading task, here UN’s errors were 

not restricted to first-digit shifts (13%) – he also had many shifts in the beginning of the second 

triplet (18%, and only 5% errors in mid-triplet digits). His first-digit shift errors can be 

interpreted in two ways. One possibility is that he had impaired generation of number word 

frames. According to this interpretation, unlike the other participants, UN was unable to use 

bypass strategies such as word-by-word repetition (perhaps because of his severely impaired 

working memory) or morphological cueing (perhaps due to his morphological deficit). A second 

interpretation is that UN had a later deficit – in phonological retrieval – which corrupted the 

lexical class information (ones, tens, teens etc.; Dotan & Friedmann, 2015; patient JG in 

McCloskey et al., 1986). We revisit these possibilities in the Discussion of this chapter. 
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7.3.5.4.2. Experiment 7.10: Multiply / divide by 10 

In this task, the participant saw simple exercises of multiplication or division by 10, read the 

exercise aloud, and then said the result. This task taps the production processes for several 

reasons. First, we presented the numbers with a comma separator, which helps an impaired 

visual analyzer. Second, because the participants read the exercise aloud, we could rely on 

correct reading of the exercise as an index to good visual analysis of that exercise. Third, because 

the produced number was different from the one printed on paper, the information about the 

number to produce did not arrive directly from the visual analyzer, but from the calculation 

mechanism (i.e., the task did not involve the standard digit-to-verbal transcoding pathway). In 

the supplementary online material, we further discuss some methodological aspects of this task. 

7.3.5.4.2.1. Method 

The participants saw a list of 28 multiplication problems mixed with 28 division problems. 

The numbers were printed with a comma separator between the hundreds and thousands digits. 

The first operand had 3-5 digits, with two non-zero digits and then zeros, and the second operand 

was always 10 (e.g., “6,500 x 10”, “740 ÷ 10”), i.e., the results had 2-6 digits. The participants 

read aloud each problem and then said the result. 

7.3.5.4.2.2. Results 

The participants had some errors in reading the exercises, but most of these errors were self-

corrected prior to providing the answer. Importantly, except UN, there was not even a single 

case of an uncorrected reading error followed by an incorrect answer. For UN there were 8 such 

cases, but in none of them could the erroneous result be explained by the reading error. Thus, 

the errors reported below originate in a production difficulty and not in a visual analysis 

difficulty. 
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Table 7.13. Error percentages in the multiply/divide-by-10 task (Experiment 7.10), which specifically 

taps the verbal output processes. To examine the processing of number length, we inspected the 

first-digit shift errors. NL, OZ, and UN had high rates of such errors, whereas the other participants 

did not. 

 First-digit shift Substitution Thousand a Transposition All errors b  

HZ  4  0  3  2 7  +  

MA  2   0  5  0  5  

ED  5  0  0  0  5  

NL  20 ***  0  0  0  20 ***  

OZ  9 **  0  0  2  11 **  

UN  43 ***  20 +++  5  0  57 ***  

Controls (SD) 2.0 (2.7) 0 0.1 (0.6) 0 2.9 (3.0)  

Comparison to control group: + p < .1    ** p ≤ .01    *** p ≤ .001    +++ Errors ≥ 7%, control group ≤ 2% 
a The rate of errors related with the decimal word "thousand" was counted out of the 37 numbers 

that had a sufficient number of digits (5 or 6). 
b The percentage of items with any error. 

NL, OZ, and UN had high rate of first-digit shift errors (Table 7.13), indicating that they had 

a number-length processing deficit in verbal production. The other participants did not have a 

high rate of first-digit shift errors, indicating spared verbal production processes. 

7.3.5.4.3. Experiments 7.11 and 7.12: Reading numbers as triplets 

The last pair of experiment to assess verbal production was a variation of number reading. 

In a way, they are the verbal correlate of Experiment 7.9, where we used a visual manipulation 

(comma separator) to help participants with impaired visual analyzer. Here, Experiment 7.11 

used a verbal manipulation designed to help participants with impaired generation of number 

word frame (but not participants with a visual analyzer deficit). Numbers were presented exactly 

as in the number reading experiments, but the required verbal output was simplified: participants 

were asked to read each number as two shorter numbers, up to 3 digits long (e.g., the number 

54321 was to be read as “fifty four and then three hundred and twenty one”). In this reading 

mode, participants never had to produce a number longer than 3 digits, so they would only need 

to generate short number word frames (e.g., for a 5-digit number they would generate a 2-digit 

frame and a 3-digit frame). The visual analysis in this task, however, is as demanding as in 

Experiment 7.1. If a participant has decimal shift errors in standard reading (Experiment 7.1) 

but not here, this would indicate that the decimal shift errors originate in a verbal production 

deficit.  
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Note that even if a person does have a production deficit that yields first-digit shifts, the 

verbal manipulation of Experiment 7.11 may fail to eliminate decimal shift errors if this person 

has an additional impairment that yields such errors – e.g., a visual analyzer deficit in the number 

length encoder or in parsing the number to triplets. To address such cases, Experiment 7.12 

combined the manipulations of Experiments 7.11 and 7.9: the participants saw the numbers with 

a comma separator (which should help coping with the visual impairment) and read them as 

pairs of shorter numbers (which should help coping with the verbal impairment). 

7.3.5.4.3.1. Method 

The participants saw the 120 numbers from Experiment 7.1 and read aloud each number as 

described above: 3-digit numbers were read like in Experiment 7.1, and each longer number 

was produced as two shorter numbers, separated by “and then” (the single word /ve-az/ in 

Hebrew). Participants were instructed to split the numbers in two such that the second number 

would have 3 digits, and we verified (with examples) that they understood these instructions. 

They were also given examples for each number length between 3 and 6 digits. In 

Experiment 7.11 the numbers were presented without a comma separator (like in 

Experiment 7.1), and in Experiment 7.12 they were presented with a comma separator (like in 

Experiment 7.9). The results were compared against the participants’ reading in Experiment 7.1 

using McNemar test. Only the 90 numbers with 4-6 digits were analyzed, because shorter 

numbers are produced in the same manner in the two experiments. 

7.3.5.4.3.2. Results 

Reading numbers as triplets clearly helped OZ (Table 7.14): his first-digit shift error rate in 

Experiment 7.11 was no longer significantly higher than the control group’s, and was lower than 

when reading the same digit strings as whole numbers (in Experiment 7.1). This pattern 

indicates that OZ’s first-digit shift errors originated in a production deficit.  

Reading as triplets also helped HZ, but to a lesser extent: she had fewer first-digit shift errors 

in Experiment 7.11 than in Experiment 7.1, indicating that at least some of her first-digit shift 

errors originate in impaired production processes. Nevertheless, even when reading as triplets, 

she still had more first-digit shift errors than the control group, indicating that some of her first-

digit shift errors originated in another process – presumably in her visual analyzer deficit. 

Indeed, in Experiment 7.12, where we used both the visual and verbal easing manipulations, her 

error rate was even lower (Experiment 7.11 versus 7.12: McNemar χ2 = 9.8, one-tailed p = .001). 
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Thus, HZ had a double deficit, in the visual analyzer as well in the production stage. Her 

remaining errors in Experiment 7.12 can be explained by the severity of her deficit – even when 

she read numbers with only 1-3 digits, she had 6% first-digit shifts, which is similar to her error 

rate in Experiment 7.12 (χ2 = 1.43, one-tailed p = .12). 

 
Table 7.14. Error percentages in reading numbers with 4-6 digits – as a whole number  

(“12 thousand, 345”, Experiment 7.1) or when saying each number as two shorter numbers  

(“12 and then 345”, Experiment 7.11). This manipulation, designed to ease on an impaired 

production process, helped OZ but not ED and NL. HZ had fewer errors in reading as triplets than 

in whole-number reading, but still more errors than the control group. 

 

As triplets, no comma 

(Experiment 7.11)a  

As triplets, with comma 

(Experiment 7.12)  

Whole number 

(Experiment 7.1) 

 1st digit shift All  1st digit shift All  1st-digit shift All 

HZ  20 +++  41   4  24   33 +++  52 

ED  13 +++  21   3  7   21 +++  28 

NL  18 +++  19   1  6   11 +++  20 

OZ  6   10   7  8   19 +++  39 

Controls (SD) 1.5 (1.7) 3.2 (2.5)  – –  1.4 (1.2) 3.5 (1.6) 

Comparison to the control group:  +++ Errors ≥ 7%, control group ≤ 2% errors 
a Comparison of 1st-digit shifts between Experiments 7.1 and 7.11:  p < .02 for HZ, p = .004 for 

OZ, no significant effect for ED and NL 

ED did not gain from reading as triplets – her first-digit shift error rate in the 

Experiment 7.11 was not significantly lower than in Experiment 7.1, and was higher than the 

control group’s. This indicates that her first-digit shifts originate in another, pre-production 

process, in perfect agreement with our earlier conclusion that she had a visual analyzer deficit. 

The present results cannot indicate whether she had a production deficit on top of her visual 

deficit or not. Based on her good performance in the other production task (Experiment 7.10), 

we assume that she did not. 

NL, ED’s sister, also did not gain from reading as triplets (Experiment 7.11). Remember 

that unlike ED, she also did not gain from the visual manipulation of displaying the number with 

comma separator (Experiment 7.9). However, when both manipulations were used in 

conjunction – i.e., when the numbers were presented with a comma separator and she read them 

as triplets (Experiment 7.12), she had merely one first-digit shift error (significantly fewer than 

in Experiment 7.1, McNemar χ2 = 10.29, p = .001) and no other decimal shift. This pattern 

indicates that NL’s first-digit shift errors originated in a double deficit: in the visual analyzer 
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and in verbal production. The comma separator helped the visual deficit and reading as triplets 

helped the verbal. Neither manipulation on its own was sufficient to improve her performance, 

because neither addressed the full problem. Only applying both manipulations in conjunction 

helped her. 

7.4. Summary: the participants’ impairments, dissociations, and loci of 

deficit 

All participants in this study had difficulties in number reading. We ran a series of number 

processing tasks to identify the functional locus of deficit underlying the number reading 

difficulties of each participant. The results of these tasks for each participant, and our 

conclusions about the functional locus of deficit of each participant, are summarized below and 

in Table 7.15. 

 
Table 7.15. The locus of deficit for each participant 

 Visual analysis  Verbal production 

 Digit 

identity 

Digit 

order 

Number 

length 

0 

positions 

Triplet 

structure 

 Verbal 

structure 

Phonological 

retrieval 

EY � � � � �  � � 

HZ � � � � ?  Mild(?) � 

MA � � � ? ?  � � 

ED � � � ? �  � � 

NL � � � ? �  � � 

OZ � Mild(?) � � �  � � 

UN � � � � �  � � 

EY had many digit order errors when she read numbers aloud. She made digit order errors 

in number reading and in tasks that involved visual digit input without verbal production (hereby 

“visual input tasks”) – sequence identification (Experiment 7.2) and same-different decision 

(Experiment 7.3). Conversely, she did not have order errors in a number repetition task 

(Experiment 7.5), which involved verbal output without visual digit input (hereby “verbal 

production task”). This pattern indicates that she had impaired digit order encoding in the visual 

analyzer. Order errors were absent from numbers with 0, i.e., the digit-order encoding deficit 

did not interfere with her ability to encode the positions of 0. This pattern suggests the existence 

of an additional process that specifically detects zeros and their positions. EY did not have 
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decimal shift errors, indicating that her processing of the number’s decimal and verbal structure 

was intact. In particular, her digit-order encoding deficit did not interfere with her ability to 

encode the number length. 

HZ had many digit order errors. Similarly to EY, these errors occurred in number reading 

and in the visual input tasks – sequence identification (Experiment 7.2), same-different decision 

(Experiment 7.3), and number matching (Experiment 7.4) – but not in the verbal production task 

(number repetition, Experiment 7.5). This indicates that she too had a deficit in digit order 

encoding in the visual analyzer. Unlike EY, she had digit order errors even in numbers with 0: 

namely, whereas EY’s dissociation suggests the existence of a dedicated “0 detector”, HZ’s 

performance indicates that she had an impairment in this 0 detector.  

HZ also had many first-digit shift errors in number reading – decimal shifts of the first 

(leftmost) digits of the numbers. These decimal shift errors originated in a visual analyzer 

deficit: they occurred in visual input tasks (same-different decision, Experiment 7.8, and number 

matching, Experiment 7.4), and the visual manipulation of adding a comma separator 

(Experiment 7.9) reduced the rate of decimal shifts. The specific deficit that can explain decimal 

shifts is an impairment in number length encoding or in triplet parsing. The finding of number-

length errors in the visual input tasks indicates that HZ had a number length encoding deficit. 

Our findings are insufficient to tell whether she had impaired triplet parsing too. HZ did not 

have decimal shifts in the verbal production tasks (number repetition, Experiment 7.5, and 

multiply/divide by 10, Experiment 7.10), but her decimal shift rate decreased by a verbal 

manipulation aimed to improve reading in case of impaired production (Experiment 7.11). Thus, 

it is possible that some of her decimal shift errors originated in a mild production deficit. 

MA had many first-digit shift errors in number reading. Her performance indicates that her 

first-digit shifts originated in a visual analysis deficit: the errors appeared in a visual input task 

(as number-length errors in same-different decision, Experiment 7.8), and their rate dropped 

when we introduced the visual manipulation of adding a comma separator (Experiment 7.9). 

Conversely, she did not make decimal shifts in verbal production tasks (number repetition, 

Experiment 7.5, and multiply/divide by 10, Experiment 7.10), and she did not gain from the 

verbal manipulation designed to help in case of impaired production (Experiment 7.11). The 

type of errors – first-digit shifts in the reading task, and number length errors in the visual input 

tasks – indicates that the impaired visual analyzer sub-process was the number length encoding. 

Our findings are insufficient to tell whether MA had impaired triplet parsing too. Importantly, 
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she only had decimal shift errors (similarly perhaps to Noël & Seron, 1993), and did not have 

many errors of other types, in particular digit order errors. Thus, her digit order encoding was 

spared – a dissociation pattern opposite to EY’s. Together, MA and EY show double 

dissociation between two visual analyzer sub-processes: digit order encoding and number-

length encoding. 

ED had many first-digit shift errors in number reading. These errors did not originate in a 

production deficit: she performed well in the verbal production tasks (number repetition, 

Experiment 7.5, and multiply/divide by 10, Experiment 7.10), and she did not gain from reading 

the numbers separated to triplets (Experiment 7.11) – a verbal manipulation designed to ease on 

impaired production processes. Her first-digit errors also did not originate in impaired encoding 

of number length by the visual analyzer, because she succeeded in the visual input tasks that tap 

number length encoding (same-different decision, Experiment 7.8, and number matching, 

Experiment 7.4). Her first-digit shift error rate dropped when she read numbers with a comma 

separator (Experiment 7.9) – a visual manipulation designed to ease on impaired parsing of 

triplets in the visual analyzer. We concluded that her deficit was in a process that parses digit 

strings into triplets in the visual analyzer. 

NL, ED’s sister, also had many first-digit shift errors in number reading. At least some of 

these errors originated in a production deficit: she made first-digit shift errors in a verbal 

production task (multiply/divide by 10, Experiment 7.10). Her success in the visual input tasks 

clearly indicates that her visual analyzer was intact in terms of processing the digit identity, digit 

order, and number length. She did not gain from the visual manipulation of adding a comma 

separator (Experiment 7.9), which was designed to ease on a visual analyzer deficit in number 

length encoding or parsing to triplets, nor did she gain from the verbal manipulation of reading 

the numbers separated to triplets (Experiment 7.11), which was designed to ease on impaired 

processing of the number’s verbal structure in the production stage; but she had no first-digit 

shifts when both manipulations were used in conjunction (Experiment 7.12). We concluded that 

she had a double deficit: in parsing the number to triplets in the visual analyzer, and in the 

number word frame generation in verbal production. Adding a comma separator addressed the 

former deficit, reading the number as triplets addressed the latter, and only applying both 

manipulation in conjunction was sufficient to reduce her decimal shift errors. 

OZ too had mainly decimal shift errors in number reading. These errors did not originate in 

impaired number-length encoding in the visual analyzer, because he succeeded in visual input 
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tasks that tap this process without requiring verbal production (same-different decision, 

Experiment 7.8, and number matching, Experiment 7.4). His errors also did not originate in 

impaired triplet parsing in the visual analyzer: the rate of decimal shifts did not decrease 

following the visual manipulation of adding a comma separator (Experiment 7.10). Rather, his 

decimal shifts originated in impaired production processes: he had many decimal shift errors in 

a verbal production task (multiply/divide by 10, Experiment 7.10), and the rate of decimal shifts 

dropped when he read each number as two shorter numbers (Experiment 7.11) – a verbal 

manipulation designed to ease on number reading in case of impaired production. Within verbal 

production, OZ’s deficit was not in the phonological retrieval process. Impaired phonological 

retrieval should cause random substitution of words, which should result in decimal shifts in all 

decimal positions, as well as in producing invalid number names (e.g., 32 → “thirty and 

twenty”). This was not the case for OZ: his decimal shifts occurred almost exclusively in the 

first digit/s of a triplet, and he did not produce invalid number names. Thus, his impairment was 

not in phonological retrieval, but in the generation of number word frames.  

OZ had many digit order errors in one of his visual input tasks (sequence identification, 

Experiment 7.2), but we believe that he did not have a digit order impairment, or at least that it 

was very mild: first, his digit-order error rate in this task, although higher than the control 

group’s, was lower than the other order-impaired participants (EY and HZ). Second, OZ did not 

have digit order errors in any other task, neither visual nor verbal: number reading, same-

different decision (Experiment 7.3), number matching (Experiment 7.4), number repetition 

(Experiment 7.5), and multiply/divide by 10 (Experiment 7.10). 

UN had many first-digit shift errors in number reading and in a verbal production task 

(number repetition, Experiment 7.5), but not in a visual input task (sequence identification, 

Experiment 7.2), indicating that his first-digit shifts originated in a production deficit. Like OZ, 

he did not have mid-triplet decimal shifts and rarely produced invalid number names, indicating 

that his deficit was not in phonological retrieval but in the generation of number word frames. 

UN also had high rate of digit substitution errors, which appeared in number reading and in 

verbal production tasks but not in visual input tasks. Thus, his errors originated in impaired 

production processes. UN’s type of errors – substitution of the digit value in production tasks 

only – resembles patient HY reported by McCloskey et al. (1986). It is possible that UN had, on 

top of his deficit in number word frame generation, a deficit similar to HY’s – in transferring 

the digit identities to the phonological retrieval stage. 
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7.5. Discussion of Chapter 7 

7.5.1. Processes involved in number reading: conclusions from the 

participants’ performance patterns 

This study investigated the number reading of seven individuals with impaired reading aloud 

of multi-digit Arabic numbers. A series of experiments showed that different participants had 

deficits in different processes of number reading. The assessment results, summarized in the 

previous section, lead to the following conclusions, which any cognitive model of number 

reading should be able to explain: 

(1) The visual analysis of digit strings and the verbal production of number words are handled 

by separate processes, as concluded by several previous studies (Benson & Denckla, 1969; 

Cohen & Dehaene, 1995; Cohen et al., 1997; Dehaene & Cohen, 1995; Delazer & Bartha, 

2001; Dotan & Friedmann, 2015; Friedmann, Dotan, & Rahamim, 2010; Marangolo et al., 

2004, 2005; McCloskey et al., 1986; Noël & Seron, 1993). In support of this assertion, we 

observed that visual analysis and verbal production can be selectively impaired: EY, MA, 

and ED were impaired only in visual analysis, whereas OZ and UN were impaired only in 

verbal production (except perhaps for a minor visual analysis deficit for OZ, in digit order 

encoding). 

(2) Within visual analysis, separate sub-processes encode the digit order and the digit identity 

(Friedmann, Dotan, & Rahamim, 2010). This is shown by the dissociation in EY’s and HZ’s 

patterns of results – good digit identity encoding and impaired digit order encoding. 

(3) Within visual analysis, separate sub-processes encode the digit order and the number length. 

This conclusion is supported by the double dissociation between EY and MA: EY had 

impaired digit order encoding and spared number-length encoding, and MA showed exactly 

the opposite pattern. Both dissociation directions meet the criteria for classical dissociation 

(Crawford, Garthwaite, & Gray, 2003; the dissociation could not be further assessed using 

the Crawford et al. formula in this case, because the dissociation was based on several tasks 

rather than one, and because the control participants were not the same ones in all tasks). 

Number production was intact for both of them, indicating that both digit order encoding 

and number-length encoding exist as a part of the visual analysis stage. 

This conclusion has direct implication on error analysis in number processing tasks. The 

dissociation between EY and MA clearly shows that decimal shifts and digit transpositions 



Chapter 7. A cognitive model for multi-digit number reading 

 177

(digit order errors) should be treated as two different kinds of errors rather than as two 

exemplars of the same error type (digit in an incorrect decimal position). Our findings 

further indicate that even this distinction between two error types is not the end of the story, 

because decimal shifts can originate in several different loci of impairments: number length 

encoding in the visual analyzer, as is the case for MA; triplet parsing in the visual analyzer, 

ED; verbal production, OZ; and perhaps also from impaired 0 detection in the visual 

analyzer (Section 7.3.5.3). 

(4) Our findings strongly suggest that within the visual analyzer, the digit order encoder 

identifies the relative order of digits rather than their absolute positions. This can be deduced 

from MA’s performance: her digit order encoder was intact (Section 7.3.3), but even with 

the digit order information available, she did not succeed distinguishing between numbers 

such as 9949 and 99499 (same-different task, Experiment 7.8). If the visual analyzer was 

encoding absolute positions, MA should have been able to distinguish between 9949-99499 

by relying on the spared position encoding of the digit 4 as decades or hundreds (or between 

9949-99949, if the position is encoded relative to the left side of the number). Her inability 

to do so suggests that the visual analyzer does not encode the absolute positions of the digits 

but rather their relative order. In any case, the digit order is specific to numbers and is not 

responsible for identifying the position of letters within words, as shown by previous 

dissociations (Friedmann, Dotan, et al., 2010). This dissociation also implies that the order 

encoding considers the abstract digits rather than retinotopic locations. 

(5) A dedicated visual analyzer sub-process is responsible for parsing triplets. Supporting this 

conclusion, ED had a selective deficit in parsing of triplets, with spared encoding of digit 

order and number length. Her deficit was in the visual analyzer, as revealed by her sensitivity 

to a visual manipulation (adding a comma separator, Experiment 7.9). 

(6) The order of digits is encoded by the digit order encoder in the visual analyzer, but the 

presence of 0 and its positions are encoded by a separate process. This conclusion is 

supported by EY’s performance pattern: she had impaired digit order encoding but this did 

not affect numbers with 0, suggesting that 0 positions were encoded by another process, 

which was functioning correctly. This 0-position encoder is a part of the visual analyzer, 

because we observed the facilitating effect of 0 not only when she read numbers aloud, but 

also in a task that required only visual analysis, without verbal production (same-different 

decision, Experiment 7.7). 
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(7) The reading system handles 0 and 1 in different ways. The positions of 0 are encoded by a 

dedicated visual analyzer sub-process, as described in the previous paragraph, but the 

positions of 1 are not. This conclusion is again supported EY’s performance: the presence 

of 0 in a number eliminated her digit order errors, but the presence of 1 did not have this 

effect: in the visual-only task (same-different) the digit 1 had no effect at all, and in the 

reading task the facilitating effect of 1 was much smaller than that of 0.  

(8) Within verbal production, the number structure is handled by a dedicated process. This 

conclusion is supported by OZ’s and UN’s performance pattern: they had many decimal 

shift errors, indicating a deficit in a process that handles the number structure; and these 

errors occurred exclusively in verbal production tasks, indicating that this structural process 

was a verbal production process – presumably, the generation of number word frames. The 

specific type of errors, first-digit shifts, further indicates that this verbal production process 

specifically represents the number length and/or the triplet structure. 

7.5.2. A revised model of number reading 

On the basis of these findings and their implications for the number reading process, we 

propose the following cognitive model of number reading (Fig. 7.2). This model is a refinement 

of the model presented in the Introduction. Within visual analysis, the model postulates several 

processes: digit identity encoding, digit order encoding, and three processes that extract the 

number’s decimal structure – length encoding, 0 identification, and triplet parsing. The output 

of these processes is sent to the verbal production stage. The decimal structure (length, triplets, 

0’s) is used to generate a number word frame, and the ordered digits are bound with the 

constituents of the number word frame to retrieve the phonological forms of each number word. 

We hereby describe in detail each of the components in the model. 

7.5.2.1. Visual analysis 

The assumption of separate processes that encode the digit identity and order on the one 

hand, and the number’s decimal structure (length, 0, triplets) on the other hand, is based on the 

finding of double dissociations between the two kinds of information: EY showed impaired digit 

order and spared decimal structure; MA, ED, and NL showed spared digit order and a deficit in 

specific bits of the decimal structure (number length, triplet structure). Conceivably, one could 

have hypothesized a model where the decimal structure is extracted from the digit order 

information, but the dissociations we observed clearly refute this possibility. Thus, the decimal 
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structure and the digit order are encoded by separate processes, and this separation is rigid – an 

intact encoding of digit identity and order cannot overtake an impaired decimal structure 

analyzer, and vice versa. 

The model assumes that the number’s decimal structure is not just sent to the verbal 

production processes, but is also used within the visual analyzer itself, to help the digit identity 

and order encoders. For example, the positions of 0 may help the digit encoders skip 0’s and 

avoid sending them as digit identities to the production stage. 

7.5.2.2. The number word frame 

The number word frame (hereby, NWF) represents the number’s verbal structure. It specifies 

the sequence of words in the verbal number, excluding the information about specific digit 

identities. Concretely, the NWF is a sequence of word specifiers of 3 different types: lexical 

classes of number words (ones, teens, tens, etc.), decimal words ("thousand", "hundred", etc.), 

and function words (the word “and”). For example, the NWF of 5,050 is [_:ones] [thousand] 

[and] [_:tens]. The NWF, in conjunction with the 1-9 values of each digit, provide sufficient 

information for the next processing stage to retrieve the phonological forms of all words in the 

verbal number. 

Which information determines the NWF? In a fully-regular language such as Chinese, the 

NWF is unambiguously identified by the number’s decimal structure – length, 0 positions, and 

triplet structure. Other languages, however, have various irregularities in the verbal structure of 

numbers. In Hebrew, English, and French, for example, the presence of 1 in the decade position 

results in a teen number word (teens do not exist in regular languages, e.g., Chinese 14 →  

十四, Shí sì, literally “ten four”). In French, the NWF is also affected by the presence of 7 or 9 

in the decade position (e.g., 73 → soixante-treize, literally “sixty and thirteen”; similarly, 93 → 

“eighty and thirteen”). Our model therefore assumes that the process creating the NWF receives 

not only the number’s decimal structure (length, 0, triplets), but also the “structure-modifying 

digits” (1 in Hebrew and English; 1, 7, 9 in French, etc.). 
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Fig. 7.2. Proposed model for reading multi-digit numbers – an extension of the model shown 

in Fig. 7.1. The extraction of decimal structure in the visual analyzer involves 3 sub-processes: 

detecting 0’s and their positions, detecting the number length, and parsing the number into 

triplets. This information is sent not only to verbal production, but also to the encoders of digit 

identity & order. The number’s decimal structure is used to create a verbal, language-

independent, representation of the number in the form of a syntactic tree. This representation 

is then serialized into a linear form – the number word frame – according to language-

dependent rules: some rules depend only on the language (e.g., in German and Arabic, the 

units word precedes the decades word), and some depend also on specific structure-modifying 

digits in the number (e.g., in English, 1 in the decade position yields an x-teen word). Finally, 

the number word frame is bound with the digits and used to retrieve the phonological form of 

each word from dedicated phonological stores. Blast icons indicate the locus of deficit of each 

participant: red = participants in this study; green = individuals we reported elsewhere (Dotan 

& Friedmann, 2015; Chapter 9); blue = individuals from other research groups (McCloskey et 

al., 1986). 
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We assume that structure-modifying digits are assigned a special status in verbal production 

but not in the visual analyzer. Two motivations drive this assumption: first, the visual analyzer 

is presumably language-independent (Bahnmueller, Moeller, Mann, & Nuerk, 2015), and as 

such should not be aware of the language currently being spoken, but structure-modifying digits 

are language-dependent. Second, structure-modifying digits are relevant only for digit-to-verbal 

transcoding, and not for other tasks such as digit-to-quantity conversion, yet the model assumes 

that the visual analyzer does not depend on the output modality. 

Note that both these motivations are not applicable to the number’s decimal structure 

(length, triplet structure, 0 positions). First, the decimal structure affects the NWF in all 

languages. Second, the decimal structure is relevant even in non-linguistic context such as digit-

to-quantity conversion: the digit 0 may have a special status when quantifying single digits 

(Pinhas & Tzelgov, 2012), which is likely to be a part of quantifying even longer numbers 

(Meyerhoff et al., 2012; Moeller, Nuerk, et al., 2009; Nuerk & Willmes, 2005; Chapter 4). The 

number length, another component of the decimal structure, may play a central role in 

converting numbers to quantity (Chapter 4), and may serve as a cue to approximate a number’s 

magnitude. Thus, the visual analyzer does not become language-dependent by having dedicated 

processes to extract the decimal structure. 

7.5.2.3. Generating the number word frame 

Two main findings illuminate on how the NWF is generated. First, a deficit in NWF 

generation (OZ and UN) resulted in many errors related with the decimal word “thousand” 

(mostly omissions), whereas such errors were rare in the control group and in the number 

production of participants with other impairments. Second, the pattern of decimal shift errors 

depended on their origin: the participants with a visual analyzer deficit (HZ, MA, ED, NL) had 

mainly first-digit shift errors, whereas the participants whose decimal shifts originated in a 

production deficit (OZ, and to a lesser extent UN) had decimal shifts also in the beginning of 

the second triplet (Table 7.5) – e.g., reading 1200 as “one thousand and twenty”.  

Both findings can be explained if the NWF is generated in a hierarchical manner. For 

example, the NWF of a 6-digit number may consist of two “sub-NWFs”, one per triplet. Certain 

impairments in verbal production may prevent the person from generating the full NWF of the 

6-digit number, but still allow them to generate shorter NWFs. In such cases, the person may 

resort to processing the long numbers in parts – e.g., one triplet at a time – because this method 

requires shorter NWFs, which he can still create. This approach could result in omissions of the 
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decimal word “thousand”: this word is a part of the 6-digit number NWF, but it is not a part of 

the NWF of either triplet. Furthermore, if the person’s impaired verbal production causes first-

digit shifts, and each triplet is being processed as a separate NWFs (and a separate number), 

then decimal shifts could occur not only in the beginning of the first triplet but also in the 

beginning of the second triplet, as observed for OZ. Importantly, both findings show that multi-

triplet NWFs result in errors specifically around the triplet boundaries, suggesting that the verbal 

production system was not just splitting long numbers randomly, but specifically into triplets. 

We hypothesize that the hierarchical processing in NWF generation is not merely in 

separation to triplets, but goes deeper and involves a fully hierarchical representation of the 

number’s verbal structure. Specifically, we propose that NWF generation is done in two stages: 

first, a hierarchical representation of the verbal number is created as a tree-like structure, 

analogous in a way to the syntactic trees that represent the syntactic structure of sentences. Then, 

this tree is serialized into a linear form, which is the NWF. This numerical-verbal syntactic tree 

is hereby explained in detail. 

The first stage is creating the tree, which reflects the number’s verbal structure: for example, 

a two-digit number would be represented by three nodes: a decades node, a units node, and a 

higher-level node that merges them. A three-digit number would be represented by three nodes 

for hundreds, decades, and units, which are merged by two higher-level nodes. The tree of a 5-

digit number such as 17,406 would include one sub-tree for 17, another sub-tree for 406, and a 

top-level node that merges the two sub-trees (Fig. 7.3, top part).  

The tree is a purely structural representation, and its creation requires only the number’s 

decimal structure. The number length determines the height of the tree and the size of the 

leftmost triplet’s sub-tree (for a 5-digit number such as the one in Fig. 7.3, the leftmost triplet 

yields a 2-digit number sub-tree). The model assumes that the numerical-verbal syntactic tree 

does not depend on a particular language: it does not reflect language-specific properties such 

as the order of words, neither does it reflect language-specific irregularities such as teens. There 

is merely one exception to this language-independency: the tree depends on the structuring of 

verbal numbers in triplets. In languages where this is not the case, the tree would be different. 

For example, Japanese verbal numbers are structured in myriads (4-digit chunks). The number 

10,000 is a single Japanese word (万, /man/), and a number such as 200,000 is verbalized  

/ni-jū man/, literally “twenty ten-thousand” (even the digit notation in Japanese conforms to this 

verbal structure: 20,0000). In Indian, there is a decimal word not only for 10,000 but even for 
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100,000 (/lakh/). Thus, a particular number would have the same numerical-verbal syntactic tree 

in all triplet-based languages (English, French, Hebrew, etc.) but a different tree in Japanese and 

yet another tree in Indian. Note that although the tree is almost independent of a specific 

language, it is nevertheless a verbal representation – it is used only for production of number 

words. Thus, the numerical-verbal syntactic tree is not the abstract representation hypothesized 

by some number processing models (Cipolotti & Butterworth, 1995; McCloskey, 1992). 

 

 
Fig. 7.3. The verbal number representations during production according to our proposed 

model (Fig. 7.2), demonstrated here for the number 17,406 in English. First, a tree-like 

representation is created based on the number’s decimal structure. This verbal representation 

depends on the number’s decimal structure but not on the specific language. The presence of 

0 in the number results in some nodes being disabled (grey color). The tree is converted into a 

number word frame – a linear representation of the number’s verbal structure. The 

linearization is done by applying language-specific rules. Some of these rules require only the 

tree representation (e.g., the order of words), and other rules depend also on the structure-

modifying digits (e.g., 1 decades yields a teens word). In English, this linearization converts 

each 1st level (bottom) node into a number word lexical class, each 3rd level node (triplet node) 

into “hundred and” or “hundred”, and each 4th level node into “thousand”. In Chinese, a 

language with purely regular verbal number system, each node yields exactly one word. The 

linearization results in a number word frame, in which each element is a lexical class of a 

number word, a decimal word (thousand, hundred, etc.), or “and”. The lexical classes are then 

bound with the number’s digits, resulting in information sufficient to retrieve the phonological 

form of each number word.  
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The next stage is linearization – applying structural rules that convert the numerical-verbal 

syntactic  tree into a linear representation, the number word frame. These conversion rules 

depend on the specific language. Some of them are general rules of the language; they require 

knowing the syntactic tree, but do not rely on specific digits. An example for such rule is the 

ordering of words: in most languages, the number words are ordered by decimal roles (e.g., for 

three digit numbers, the hundreds word precedes the decades word, which precedes the units 

word), but in some languages the unit word precedes the decade word (26 → “six and  

twenty”) – e.g., German (Blanken, Dorn, & Sinn, 1997; Zuber, Pixner, Moeller, & Nuerk, 2009), 

Arabic, and old English (Berg & Neubauer, 2014). Another example for a language-general rule 

is proper embedding of the function word “and”, which is needed only in some languages. Other 

structural rules depend not only on the tree but also on specific digits in the number – the 

structure-modifying digits. One example for such rule is the teens irregularity: a decade+unit 

sub-tree usually translates into [_:tens] [_:teens], but it translates into [_:teens] when the 

decade digit is 1. Another example is the French rule that converts a decade+unit sub-tree into 

[_:tens] [_:teens] when the decade digit is 7 or 9. 

The model assumes that linearization is the only stage affected by language-specific 

structures. Thus, the visual analyzer, which is language-independent, does not have to consider 

the language-dependent structure-modifying digits separately from the other digits 

(Section 7.5.2.2). The model also correctly predicts that structure-modifying digits would not 

have a special status in nonverbal tasks, where the NWF generation processes are inactive (this 

is the pattern observed with respect to the effect of 1 on EY’s performance, see item 7 in 

Section 7.5.1). 

An alternative model, which assumes that even the numerical-verbal syntactic  tree depends 

on the specific language, seems less likely. Such a model would imply that the tree depends not 

only on the number’s decimal structure (its length, triplet structure, and the positions of 0) but 

also on structure-modifying digits. This virtually annuls the benefit of having the number’s 

decimal structure as a distinct representation: if the creation of the syntactic tree must anyway 

await the structure-modifying digits information, it unclear why the visual analyzer dedicates 

specific processes to identifying the decimal structure but not the structure-modifying digits (see 

Section 7.5.2.2). 

A deficit in the creation of the syntactic tree may impair a person’s ability to represent high-

level tree nodes, and limit their representational ability to trees up to a certain height (Friedmann 
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& Grodzinsky, 1997). For example, such deficit may prevent the speaker from representing the 

top-level node, thereby leaving him able to process only one-triplet numbers. This may have 

been the case for OZ and UN. A more severe deficit may restrict the person to even shallower 

trees – e.g., to single-node trees – rendering the person unable to say multi-word numbers. This 

may have been the case for patient ZN (Chapter 9), who could hardly produce even two-digit 

numbers. 

This model clearly explains why OZ, who had many “thousand”-related errors in number 

reading, did not have corresponding errors when he read each of these numbers as separate 

triplets (combining each pair of triplets with “and then” rather than with the decimal word 

“thousand”, Experiment 7.11). The two modes of reading create minimal pairs of numbers with 

almost identical surface structure (in Hebrew, both “thousand” and “and then” are single words 

with 2 syllables and 4 phonemes), but with completely different internal representations: when 

reading the number in a standard manner, OZ would attempt to create a tree structure like the 

one depicted in Fig. 7.3. Conversely, reading the number as two separate triplets does not require 

the top node, and can be accomplished by two separate syntactic trees, each of which is 

shallower (and therefore easier). 

7.5.2.4. Binding the number word frame with the digits 

Verbal numbers include three types of words: number words (“five”, “eleven”), decimal 

words (“thousand”), and function words (“and”). The NWF identifies unambiguously the 

decimal words and the function words. Number words, however, are under-specified – the NWF 

merely specifies their lexical class. To obtain a full specification of the number word, the lexical 

class must be bound with the value of the corresponding digit. This binding process takes as 

input the NWF, provided by the tree linearization process, and the sequence of ordered digits, 

provided by the digit identity and order encoders in the visual analyzer. The bound NWF 

contains the full information required for retrieving the phonological forms of each word. 

The existence of a dedicated digit-NWF binding process within verbal production solves a 

potential problem of synchronization. Number words are retrieved from the phonological store 

one at a time, based on two parameters – the identity of a digit (1-9) and a lexical class (ones, 

tens, teens, etc.). The digits arrive from the digit identity and order encoders, and the lexical 

class arrives via a different pathway – from the NWF. For successful retrieval, the two pathways 

must be synchronized. This synchronization challenge can be easily solved if a single process 

(the binding) activates both the digit and the corresponding lexical class. The dedicated binding 
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process can also explain the modification needed for the French numbers 71-79 and 91-99: 

saying 75 as soixante-et-quinze, “sixty and fifteen”, requires not only creating the irregular NWF 

[_:tens] [_:teens]; it also requires that the binding process would change the digit 7 into 6  

(to get the word soixante, sixty) and the digit 9 into 8. 

The model postulates that the binding process is triggered by the verbal system: the verbal 

system does not passively receive the ordered digits from the visual analyzer and passes them 

straight on to phonological retrieval, but rather it actively picks the digits in the appropriate 

order. This verbal-triggered architecture allows picking the digits in the order imposed by the 

verbal structure of numbers in the particular language – an order that is presumably unknown to 

the visual analyzer. An alternative possibility, that the number words are ordered after 

phonological retrieval, is unlikely: the retrieved phonological forms are immediately sent to 

articulation, without the mediation of a phonological short-term memory store that might have 

done this reordering (Dotan & Friedmann, 2015; Shalev et al., 2014).  

To allow the verbal-triggered architecture, the model postulates the existence of a digit 

buffer, a short-term storage of digits. The visual analyzer, in particular the digit identity and 

order encoders, update this buffer, and the binding process picks digits from the buffer. The 

NWF linearization too picks structure-modifying digits from the same buffer. The existence of 

such buffer could explain UN’s high rate of digit substitution errors: his low memory capacity 

(Table 7.3) may have affected this short-term buffer too, resulting in a high rate of digit 

substitutions. We are inclined to assume that this buffer is visual rather than verbal, for two 

reasons. First, the buffer is presumably updated by the visual analyzer and not by any verbal 

process, so the information it contains reflects the ordered digits per-se, and in this sense the 

information is of visual nature. Second, a visual buffer can explain a peculiar pattern in EY’s 

performance: the presence of the digit 1 in the number reduced her digit order errors in number 

reading, but not in a visual-only task. Presumably, the linearization stage explicitly looked up 

“1 decades” in the digit buffer, which interacted with the visual analyzer and prompted it to 

improve the position encoding when the number contained 1. When the task was nonverbal, this 

feedback loop was inactive, so position encoding was not as intense. 

7.5.2.5. Phonological retrieval and articulation 

The digit-NWF binding process produces an exact specification of the sequence of words in 

the verbal number. This specification is now used to retrieve the phonological form of each 

word. Unlike ordinary content words, the phonological forms of the verbal number’s words are 
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not retrieved from the phonological output lexicon (Friedmann et al., 2013) but from a dedicated 

phonological store (Dotan & Friedmann, 2015). Verbal numbers include three types of words: 

number words, decimal words (e.g., “thousand”, “hundred”), and the function word “and”. Each 

of these word types is stored in a separate phonological store (or alternatively, the phonological 

store is strictly organized in a category-based manner, Dotan & Friedmann, 2015).  

The dedicated phonological stores maintain number and function words with their phonemes 

already assembled, so they can be directly sent to the articulation mechanisms without the need 

for an additional stage of phoneme assembly (Dotan & Friedmann, 2015). Still, the phonological 

forms may undergo morpho-phonological assembly – e.g., in Hebrew, “and” is a clitic, a bound 

function word, and should be assembled as the prefix of a number word. After this assembly, 

the phonological sequences are sent to the articulation mechanisms, which are presumably 

language-general and not specific to numbers (Shalev et al., 2014). 

7.5.2.6. Additional processes 

Our model postulates that information is directly sent from visual processes to verbal 

processes. Our findings can be fully explained without resorting to an additional conversion 

process that transforms the data from one format to another, however, such an intermediate 

transformation process is still possible (this would resemble the mechanisms of grapheme-to-

phoneme –– letter-to-sound –– conversion in word reading, Coltheart et al., 2001). Future 

studies may specifically examine this point. 

Visually presented numbers are not used only in the context of reading aloud. Perhaps more 

often than not, we merely need to comprehend them: either comprehend a concept they represent 

(e.g., “1984”, “100%”) or the quantity they represent. Dissecting these comprehension processes 

was not in the scope of the present study. Nevertheless, the processes described by our model – 

the visual analyzer and the verbal production processes – are presumably used whenever we 

need to comprehend a digit string or say a verbal number. This assumption is supported by our 

participants’ pattern of performance, at least with respect to several simple tasks (same-different 

decision, number matching, sequence identification, saying the result of an arithmetic exercise). 

It is also in agreement with the model presented in Chapter 6: number-length encoder in the 

visual analyzer may play an important role in converting digit strings to quantity, in particular 

in creating the syntactic frame for the number’s quantity. 
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7.5.3. Relation to other studies and specific types of impairments 

The elements of our model can be classified into lexical pathways and processes, which 

handle single digits or number words (purple color in Fig. 7.2), and syntactic/structural 

pathways and processes, which handle the number’s decimal and verbal structure (orange color 

in Fig. 7.2). The model therefore complies with the classical lexical-syntactic distinction 

theorized in several previous transcoding models (Cappelletti et al., 2005; Cipolotti, 1995; 

Cipolotti et al., 1995; Delazer & Bartha, 2001; Deloche & Seron, 1982; McCloskey et al., 1985; 

Noël & Seron, 1993, 1995; Sokol & McCloskey, 1988). Nevertheless, our model goes beyond 

the lexical-syntactic distinction by offering a finer level of granularity: it distinguishes between 

visual and verbal processes, describes the internal structure and for each of those, separates 

between specific lexical and syntactic processes, and proposes an accurate account of the 

information flow. 

Our model can account for several cases reported in the literature. SZ and GE, two 

individuals who we reported previously (Dotan & Friedmann, 2015), made substitutions of 

number words in number reading and in verbal production tasks. We diagnosed their deficit as 

localized in the retrieval from the phonological storage of number words.  

In another study we reported ZN, an aphasic patient with articulation deficit who was also 

completely unable to say multi-digit numbers (Chapter 9). Interestingly, ZN’s difficulty was 

observed only when he had to generate a number word frame (e.g., when reading numbers and 

when saying a calculation result), whereas he performed quite well when the number word frame 

was explicitly provided to him (e.g., in a number repetition task). We therefore diagnosed his 

deficit as localized in the NWF generator – similarly to OZ and UN, yet more severe.  

McCloskey et al.’s (1986) patient JG, who made only class errors, was apparently impaired 

in handling the number word lexical class information during NWF-digit binding, or in 

transferring it from the NWF to the binding stage. Their patient HY was apparently impaired in 

transferring the digit identities to the binding stage.  

Cipolotti (1995) reported patient SF, who made errors in number reading but not in 

comprehension-only or production-only tasks. His errors were mainly first-digit shifts, but also 

other decimal shifts and substitutions. Cipolotti concluded that he was impaired in the digit-to-

verbal transcoding pathway, with spared visual analyzer and verbal production. Translating this 

conclusion to our model would point to the decimal structure analyzer → tree generation 

pathway as SF’s locus of deficit. 
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The model also makes predictions about specific performance patterns that should be 

observed given impairments in specific stages of NWF generation. A deficit in creating the 

numerical-verbal syntactic  tree should result in incorrect verbal structure, and in some cases 

may involve errors in merely a single structural feature. Such single-feature errors may have 

been the case for OZ and UN: their verbal impairment caused errors in the number length 

information, but not in other structural aspects of the number (e.g., 0 positions). More 

specifically, an inability to represent trees with sufficient levels (“pruning the tree”, Friedmann 

& Grodzinsky, 1997) may be the cause for omissions of the “thousand” decimal word. 

Alternatively, such deficit may result in the creation of undersized trees (e.g., a 3-digit tree for 

a 5-digit number), yielding too-short NWFs with which only some of the digits would be bound, 

e.g., 23,456 may be read as 356. 

A deficit in the digit-independent linearization rules may yield similar errors, but may also 

result in language-specific errors such as failing to reorder the decade and units words in German 

and Arabic. 

A deficit in the digit-dependent linearization rules should yield errors in the language-

specific irregularities handled by this process – e.g., applying a teen word when the decade digit 

is 1, and using the appropriate French words for numbers in the range 71-79 and 91-99. 

A deficit in the digit-NWF binding stage may result in two kinds of order errors: picking 

incorrect digits from the digit buffer may result in within-triplet digit order errors. Errors in 

synchronizing each digit with the lexical class may result in “class order errors” – number words 

would be produced with an incorrect lexical class, but the erroneous class would be one that 

exists elsewhere in the number (e.g., 317 may be incorrectly produced as “thirteen hundred and 

seventeen”, but is less likely to be produced as “thirty hundred and seventeen”, because the 

target number has no [Tens] word). 

7.5.4. The role of peripheral versus central processes in implementing 

cognitive operations 

Reading multi-digit numbers is a complex process. The conversion of numbers from one 

representation to another is not merely a simple symbol-to-word conversion: the existence of 

0’s, 1’s, and other structure-modifying digits in the number creates a structural complexity, often 

referred to as “syntactic”. The model we presented here provides a detailed, low-level account 

of how this syntactic complexity is addressed by the cognitive system. Note that the model puts 

a lot of weight on the encoding stage. This is not a trivial assumption. Hypothetically, it could 
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have been the case that the visual analyzer extracts only the minimum required information – 

the identity and position of each digit – and a later, more central mechanism identifies the 

number’s structure in order to convert it from digit format to verbal format. Number processing 

models along these lines were indeed offered in the past (McCloskey et al., 1986). Based on the 

performance of several patients with impairments in the visual analysis stage, the present study 

suggests that this is not the case: the visual analyzer, although it is a visual process, extracts the 

number’s structure and allocates dedicated mechanisms to encode it. Similarly, even peripheral 

stages in verbal production allocate dedicated mechanisms to handle numbers as high-level 

representations: the phonological output buffer, the last processing stage before articulation, 

handles sequence of phonemes for most words, but whole-word representations in the case of 

number words (Dotan & Friedmann, 2015). The existence of these higher-level representations 

in peripheral processes is perhaps useful as they may simplify the format conversion and make 

it more efficient. 

High-level representations in peripheral stages exist in other domains too. In word reading, 

like in number reading, the visual analyzer, together with the graphemic input buffer following 

it, not only encodes letter identities and positions but also extracts morphological information 

(Beyersmann et al., 2011; Friedmann & Gvion, 2012; Friedmann, Gvion, & Nisim, 2015; 

Friedmann, Kerbel, & Shvimer, 2010; Longtin & Meunier, 2005; Rastle & Davis, 2008; Rastle 

et al., 2004; Reznick & Friedmann, 2009; Sternberg & Friedmann, 2007; Velan & Frost, 2011). 

Morphological information also has dedicated processing mechanisms in the peripheral-

orthographic stages of writing (Badecker, Hillis, & Caramazza, 1990; Badecker, Rapp, & 

Caramazza, 1996; Yachini & Friedmann, 2008), as well as in the peripheral post-lexical stages 

of speech (Job & Sartori, 1984; Kohn & Melvold, 2000; Patterson, 1982). These post-lexical 

stages of speech also handle lexical-syntactic information in the case of function words (Dotan 

& Friedmann, 2015), and may even perform syntactic sentence-level operations such as verb 

movement (Chomsky, 1995, 2001; Dotan & Friedmann, 2015; Friedmann et al., 2013; Zwart, 

2001). Taken together, this body of research does not suggest a centralized system with 

sophisticated central processes and simple peripheral processes. Rather, it suggests a distributed 

system, in which peripheral processes communicate high-level information to one another.  
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8. Separate mechanisms for number reading and word 

reading ° 

Abstract. How specific are the cognitive mechanisms involved in the reading of words and numbers? 

Several neuropsychological and brain imaging studies show dissociations between the two reading 

mechanisms. Here, we tackle the question of word-number dissociation in high granularity: we ask 

which specific cognitive sub-processes serve both word reading and number reading and which are 

separate. As a framework for this high-granularity comparison, we describe a cognitive model for word 

reading and another model for number reading. We propose a possible homology between specific 

sub-processes of the two models, and review specific word-number dissociations in light of this 

homology. We then report two women with selective deficits in sub-processes that handle the 

number’s structure: parsing the number into triplets (which is a part of encoding the number’s decimal 

structure during visual analysis) and generating the number’s verbal structure (number word frame). 

The deficits were specific to reading numbers: the two women showed good word reading abilities, 

even in reading morphologically complex words and in morphological tasks that specifically tap the 

processing of word structure. Together with previous dissociations, this indicates that the word and 

number reading pathways are largely separate. We propose that differences in the morpho-syntactic 

structure of words and numbers may underlie this separation. 

8.1. Introduction 

Reading is a complex cognitive operation. It involves orthographic, phonological, 

morphological, syntactic, and semantic processes, all of which need to operate in coordination. 

The degree of specificity of these processes is a major theoretical question. Reading could be 

implemented by a set of highly specialized mechanisms, dedicated to the processing of words. 

Alternatively, it could be accomplished by domain-general mechanisms, which serve not only 

the processing of words but also other functions. Identifying the range of functions supported 

by the reading mechanisms could improve our understanding of reading, of its developmental 

and evolutionary origins, and may shed light on the role of domain-specific versus domain-

general mechanisms in implementing complex cognitive functions (Dehaene et al., 2003; 

Hauser, Chomsky, & Fitch, 2002; van de Cavey & Hartsuiker, 2016; Whorf, 1940; Wilson et 

al., 2015). From a clinical perspective, understanding the relation between word reading and 

number reading could be crucial for a more accurate assessment and treatment of reading 

disorders – dyslexia. 

                                                 
° This chapter was submitted to the journal Cognitive Neuropsychology. The text here is identical with the submitted 
manuscript, except reformatting and removing some parts that would, if remained, repeat other sections of this 
dissertation. 



Chapter 8. Separate mechanisms for number reading and word reading 

 192

The present study examined the relation between the cognitive mechanisms involved in 

word reading and number reading. Words and numbers have much in common: both are written 

as character strings and must comply with certain structural rules, and both types of strings – 

letters and digits – can be converted to a verbal-phonological format. At the same time, words 

and numbers are also quite different: the language of numbers is merely a small subset of natural 

language, and its syntax is simpler. Correspondingly, the string-to-verbal conversion rules of 

numbers are simpler than those of words: we can formulate a relatively simple algorithm, a set 

of rules, to convert any digit string to words or vice versa (e.g., Deloche & Seron, 1987), but 

formulating such rules for translating letter strings to sounds is much more complex. Letter and 

digit strings are also different in the way they are used: words as well as numbers may refer to 

semantic concepts (“orange”, “Peugeot 205”), but numbers also have meaning as quantities, 

which can be extracted from any number and do not depend on lexical knowledge of specific 

digit strings (Nuerk & Willmes, 2005). Indeed, it has been suggested that letter strings and digit 

strings are processed in different ways and in different brain circuits because the subsequent 

processing stages that use them are different (Hannagan et al., 2015). 

One way to examine the relation between word and number reading is by investigating the 

reading performance of individuals with reading difficulties. Impairments in processes that 

serve only words or only numbers should affect only the reading of the relevant stimulus type, 

but impairment in a shared process would affect both stimulus types. Thus, the extent of the 

behavioral deficits can inform us about the underlying cognitive processes. In many cases, 

cognitive impairments affect the reading of words as well as the reading of numbers (Cohen et 

al., 1994; Denes & Signorini, 2001; Friedmann, Dotan, & Rahamim, 2010; Katz & Sevush, 

1989; Shen et al., 2012; Starrfelt, Habekost, & Gerlach, 2010). Indeed, dyslexia and dyscalculia 

often co-occur in the same people (Wilson et al., 2015). This could suggest that word reading 

and number reading are implemented, at least in part, by shared cognitive mechanisms (Denes 

& Signorini, 2001). However, in other cases, dissociations were observed between word reading 

and number reading, supporting the notion of two distinct reading mechanisms. Disorders of 

word reading sometimes spare number reading (Anderson, Damasio, & Damasio, 1990; Cohen 

& Dehaene, 1995; Friedmann & Nachman-Katz, 2004; Friedmann, Dotan, & Rahamim, 2010; 

Hécaen & Kremin, 1976; Leff et al., 2001; Lühdorf & Paulson, 1977; Nachman-Katz & 

Friedmann, 2007; Sakurai, Yagishita, Goto, Ohtsu, & Mannen, 2006; Starrfelt, 2007; Temple, 

2006), and disorders of word comprehension sometimes spare number comprehension (Cohen 
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& Dehaene, 2000; Dalmás & Dansilio, 2000; Miozzo & Caramazza, 1998; but some such 

dissociation were criticized as statistically unconvincing, Starrfelt & Behrmann, 2011). The 

opposite is also true: disorders of number reading sometimes spare word reading (Basso & 

Beschin, 2000; Cipolotti, 1995; Cipolotti et al., 1995; Marangolo et al., 2004; Priftis, Albanese, 

Meneghello, & Pitteri, 2013; Temple, 1989). In the present study, we report two more 

individuals with difficulties in number reading, whose word reading was spared. 

Comparing word reading versus number reading holistically, i.e., treating each kind of 

reading as a whole (as we did in the previous paragraphs), is merely the first step. Both word 

reading and number reading are complex cognitive operations, and each involves many sub-

processes. It may very well be that some of these sub-processes are shared between word reading 

and number reading whereas other sub-processes are not. Thus, the next step is to examine the 

question of shared versus separate mechanisms with respect to specific cognitive sub-processes 

involved in reading. This is the approach taken in the present study.  

In the remaining part of this introduction, we first describe the cognitive mechanisms 

involved in word reading and number reading, and point to potential parallels between them. 

Then, we review studies that showed dissociations and associations between specific, analogous 

processes of number reading and word reading. Finally, we identify the gaps where our 

knowledge about the word-number relation is incomplete, and explain how the present study 

fills some of these gaps. 

8.1.1. Cognitive mechanisms of reading words and numbers 

We begin by describing the processes involved in word reading and number reading. We 

describe these reading mechanisms in a moderate level of granularity, as we see fit for the goal 

of comparing the two cases. Both cognitive models, that of word reading and that of number 

reading, can also be described in further detail. Such descriptions are available elsewhere, both 

for word reading (Friedmann, Biran, & Dotan, 2013; Friedmann & Coltheart, in press) and for 

number reading (in Chapter 7). 

8.1.1.1. The cognitive architecture of word reading 

The dual-route model of word reading (Coltheart et al., 2001; Coslett, 1991; Ellis & Young, 

1988; Forster & Chambers, 1973; Frederiksen & Kroll, 1976; Friedmann & Gvion, 2001; 

Funnell, 1983; Jackson & Coltheart, 2001; Marshall & Newcombe, 1973; Paap & Noel, 1991; 

Patterson & Morton, 1985) describes several different processes involved in reading single 
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words (Fig. 8.1). Reading begins by visual analysis of the sequence of letters: encoding their 

identities, their relative positions within a word, and their association to words (Coltheart, 1981; 

Ellis, 1993; Ellis, Flude, & Young, 1987; Ellis & Young, 1996; Friedmann, Biran, & Gvion, 

2012; Friedmann & Gvion, 2001; Friedmann & Haddad-Hanna, 2012, 2014; Humphreys et al., 

1990; Humphreys & Mayall, 2001; Kezilas et al., 2014; Lambon-Ralph & Ellis, 1997; Marshall 

& Newcombe, 1973; Peressotti & Grainger, 1995; Saffran & Coslett, 1996). The orthographic-

visual analyzer also performs an initial morphological decomposition of the word (Beyersmann 

et al., 2011; Friedmann et al., 2015; Friedmann, Kerbel, et al., 2010; Longtin & Meunier, 2005; 

McCormick, Rastle, & Davis, 2008, 2009; Rastle et al., 2004; Reznick & Friedmann, 2015; Taft 

& Forster, 1975).  The reading process then continues in two parallel pathways: in the lexical 

pathway, the word is first found in a lexicon that contains the orthographic form of all familiar 

words (Coltheart & Funnell, 1987; Friedmann & Lukov, 2008). The lexical entry is used to 

retrieve the word’s phonological components (phonemes, metric structure) from a phonological 

output lexicon. These phonological components are merged in the phonological output buffer, 

and the word is finally articulated (Butterworth, 1992; Dell, 1988; Friedmann et al., 2013; 

Laganaro & Zimmermann, 2010; Levelt, 1992; Levelt, Roelofs, & Meyer, 1999; Nickels, 1997). 

The second pathway of word reading, the sub-lexical pathway, does not rely on lexicons: the 

sequence of letters is translated into a phonological sequence by the grapheme-to-phoneme 

converter, which relies on language-general conversion rules (Coltheart, 1978; Friedmann & 

Lukov, 2008; Schmalz, Marinus, Coltheart, & Castles, 2015). The phonological sequence is 

then merged in the phonological output buffer and sent to articulation. Thus, the last stages in 

the word production pathway (phonological output buffer, articulation) serve both the lexical 

and the sub-lexical routes. 

A partially separate processing pathway handles comprehension. After identifying a word 

in the orthographic input lexicon, we use this information to access the semantic system and get 

the word’s meaning. The semantic system, in turn, can directly access the phonological output 

lexicon and the rest of the production pathway, even if the word was not presented visually – 

this is what happens when we just talk (Friedmann et al., 2013). When both the lexical and sub-

lexical pathways are blocked, reading proceeds via the semantic pathway, a situation known as 

deep dyslexia (Coltheart, Patterson, & Marshall, 1987; Stuart & Howard, 1995). Because the 

semantic pathway conveys the meaning of the word rather than a specific entry in the lexicon, 
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deep dyslexia is characterized by semantic errors (e.g., fruit → apple) that presumably result 

from insufficiently accurate representations of the word meanings. 

 

 
Fig. 8.1. A cognitive model of word reading (Friedmann & Coltheart, in press). The orthographic-visual 

analyzer extracts the letter identity and order from the letter string, and binds letters to words. In the 

lexical pathway (middle column), the letters are used to identify the word in the orthographic input 

lexicon. The phonological output lexicon, which contains a corresponding lexical entry, provides the 

phonological components of the word. These components are merged in the phonological output 

buffer and then articulated. In the sub-lexical pathway (right), the lexicons are bypassed by directly 

converting graphemes (letters or letter groups) to phonemes. The semantic pathway (left) allows 

comprehension of the word without producing it, as well as production of words that were not visually 

presented. 

8.1.1.2. The cognitive architecture of number reading 

When reading numbers, we see a sequence of digits and translate it into a sequence of 

number words. The visual analysis of digits and the verbal production of number words are 

implemented by separate cognitive mechanisms, as indicated by several neuropsychological 

case studies (Benson & Denckla, 1969; Cohen & Dehaene, 1995; Cohen et al., 1997; Delazer & 

Bartha, 2001; Dotan & Friedmann, 2015; Friedmann, Dotan, & Rahamim, 2010; Marangolo et 

al., 2004, 2005; McCloskey et al., 1986; Noël & Seron, 1993; Chapter 9) and brain imaging 

studies (Dehaene & Cohen, 1995; Dehaene et al., 2003; Shum et al., 2013).  
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Fig. 8.2. A cognitive model for number reading. The digit string is parsed by the numeric-visual analyzer, 

which identifies the digit identity, the digit order, and several aspects of the number’s decimal 

structure: its length, the positions of 0, and its triplet structure. The decimal structural information is 

used to obtain a number word frame – an almost-full specification of the sequence of number words 

to produce, that lacks only the specific digit values (e.g., the word frame for 5012 is [_:ones] [thousand] 

[and] [_:teens]). The word frame is bound with the corresponding digit identities (“5” and “2” in this 

example), resulting in a full specification of the words to produce. The phonological form of each word 

is then retrieved and sent to articulation. 

A more detailed model of number reading was proposed in Chapter 7. Here, we re-describe 

the main components in this model (Fig. 8.2). The model postulates that within visual analysis 

of digits, the identities and order of digits are encoded by two separate processes. This separation 

is supported by studies that found selective impairments in each of the two processes (Cohen & 

Dehaene, 1991; Friedmann, Dotan, & Rahamim, 2010). Another set of numeric-visual analysis 

sub-processes extracts the number’s decimal structure – how many digits it has, the positions of 

0, and how digits are grouped to triplets. The decimal structure is used by the verbal production 

processes to generate the number word frame – a representation of the number’s verbal structure. 

The number word frame is a sequence of word specifiers, each of which can be the lexical class 

of a number word (e.g., ones, tens, teens), a decimal word (“thousand”, “hundred”) or a function 

word (“and”). Thus, the word frame specifies the verbal number fully except the specific digit 

values. For example, the word frame for 5012 is [_:ones] [thousand] [and] [_:teens]. To obtain 

the words, the word frame is first bound with the specific digit identities, provided by the digit 

identity encoder and digit order encoder sub-processes of the numeric-visual analyzer. This 
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yields a complete specification of the words to produce: [5:ones] [thousand] [and] [2:teens]. 

This full specification is used to retrieve the words from dedicated phonological stores (Dotan 

& Friedmann, 2015; McCloskey et al., 1986). 

The model describes how visually-presented digit strings are read aloud. Another question 

is how we comprehend numbers. This question has at least two answers, because numbers have 

at least two different kinds of categorically-different meanings. One meaning refers to a familiar 

digit string as a lexical entry, and may resemble the meaning of words – e.g., “Peugeot 306”, 

George Orwell’s “1984”, and the use of “100%” to express absolute certainty. Another kind of 

meaning is the quantity represented by the number. This quantity, represented in the 

Approximate Number System (Dehaene, 1992; Dehaene & Cohen, 1995; Dehaene et al., 2003; 

Feigenson, Dehaene, & Spelke, 2004; Mou & VanMarle, 2014; Nieder, 2013; Piazza, 2010), 

can be extracted from any digit string by a set of dedicated cognitive processes (Nuerk & 

Willmes, 2005; and see Section A of this dissertation). The digits-to-quantity pathway 

presumably involves the numeric-visual analyzer presented above, but not the verbal production 

mechanisms of numbers (Chapter 9). 

8.1.2. Possible parallels between word reading and number reading 

mechanisms 

Perhaps the clearest parallel between words and numbers is that both involve visual / 

orthographic input processes (orthographic or numeric visual analyzer, orthographic input 

lexicon) and verbal / phonological production processes (phonological retrieval, phonological 

output buffer, generation of number word frames). 

Parallels can be found also for higher-granularity processes. For words and numbers alike, 

visual analysis of the character string involves specific processes to encode the identity of 

characters and their relative order. Another parallel concerns the distinction between lexical and 

structural processes. Models of symbolic number processing typically categorize processes as 

“lexical”, handling the identities of single elements (digits and number words), or as “syntactic”, 

handling the relations between these elements, i.e., the number’s decimal or verbal structure7. 

This distinction, single-element processing versus structure processing, may apply to word 

reading too: some processes handle single letters or phonemes, whereas other processes handle 

                                                 
7 Note that the term “lexical” is used with different meanings in the literatures of word and number processing: for 
numbers, “lexical” refers to processing the identity of a single digit or number word; for words, “lexical” denotes 
familiar words, for which we store some information in a lexicon. 
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the word’s morphological structure. The so-called syntactic processes in number reading may 

therefore parallel morphological processes in word reading. In support of this putative parallel 

between “number syntax” and morphology, the phonological output buffer appears to process 

number words and morphemes in similar manners, storing them as phonological building 

blocks, larger than a single phoneme and already assembled and ready for articulation (Dotan 

& Friedmann, 2015). Similarly, morphological/structural information is extracted by the 

orthographic-visual analyzer of words (Friedmann et al., 2015; Reznick & Friedmann, 2009, 

2015) as well as by the numeric-visual analyzer of numbers (Chapter 7). 

In spite of these similarities between word and number reading, the parallel is not perfect. 

Two issues stand out as major differences between word and number reading. First, a letter 

string is converted to one word, whereas a digit string is converted to multiple words. Second, 

any digit string yields a valid number (except leading 0’s), but letter string are subject to lexical 

and morphological restrictions. Most digit strings are not lexically familiar and are not processed 

as whole lexical units (Chapter 4), but most words are lexically familiar and enter orthographic 

and phonological lexicons. In this respect, number reading may parallel the sub-lexical route of 

word reading (Denes & Signorini, 2001). On top of these two differences, even when word and 

number reading involve potentially parallel processes, these processes seem to be different when 

examined in detail. For example, both word reading and number reading involve 

orthographic/numeric visual analyzers that extract structural/morphological information about 

the letter string or digit string, but the nature of this information is different in the two cases: 

morphemes for words, decimal structure for numbers. 

8.1.3. Dissociations and associations between specific processes of word 

and number reading 

We now turn to review studies that compared word reading and number reading (see a 

review in Starrfelt & Behrmann, 2011). Per our approach in the present study, we restrict this 

review to studies that compared specific sub-processes of reading. 

8.1.3.1. Visual analysis of letters and digits 

Current research clearly shows a stage of orthographic-visual analysis for words, and 

numeric-visual analysis for numbers. Is there one mechanism responsible for these two 

functions, or are there two separate visual analyzers? 



Chapter 8. Separate mechanisms for number reading and word reading 

 199

In support of the separate-mechanisms possibility, several dissociations were reported 

between the orthographic-visual analyzer and the numeric-visual analyzer. Both word reading 

and number reading involve a character-position encoding process as part of the visual analysis. 

However, Friedmann, Dotan, et al. (2010) reported 10 individuals who had letter position 

encoding impairment but whose digit position encoding was normal. This suggests that the 

position encoders of letters and digits are separate. Letter identity dyslexia (sometimes referred 

to as visual dyslexia), a selective deficit in letter identification, can sometimes affect digit 

identification too (and even other symbol types, Sinn & Blanken, 1999), but importantly, there 

are also reports of individuals with this dyslexia whose digit identification was intact (Crutch & 

Warrington, 2007). Neglect dyslexia, another disorder that affects the visual processing of the 

character string, can impair number processing while sparing words (Priftis et al., 2013) or the 

other way around (Friedmann & Nachman-Katz, 2004). At the neural level, the word-number 

separation in visual processing is supported by studies that showed different brain activity 

patterns following exposure to letters and digits (Abboud et al., 2015; Baker et al., 2007; 

Grotheer, Herrmann, & Kovacs, 2016; Hannagan et al., 2015; Park, Hebrank, Polk, & Park, 

2012; Shum et al., 2013). All these evidence lead to the conclusion that there are separate visual 

analysis processes for words and numbers.  

Dissociations between words and numbers were not yet reported with respect to the 

structural components of the orthographic/numeric visual analyzers – decimal structure analysis 

of digit strings and morphological analysis of letter strings; and with respect to the binding of 

letters to words (it is even unknown whether a corresponding digit-to-number binding process 

exists for numbers). In the present study, we will report one such dissociation – we show a 

selective deficit in one sub-process of the decimal structure analysis, without a corresponding 

deficit in word reading (in fact, without any deficit in word reading). 

Several visual processes take place before the orthographic or numeric visual analyzer can 

identify the abstract identity of the letters or digits (e.g., processing the visual image, encoding 

visual features, etc.). For these processes too, no dissociation was reported. McCloskey and 

Schubert (2014) suggested that these mechanisms are shared for words and numbers. 

8.1.3.2. Verbal production 

Verbal production of words and numbers is also at least partially separate. Temple (1989) 

and Marangolo et al. (2004) reported individuals who had impaired number production 

alongside spared word production, and Bencini et al. (2011) reported the opposite pattern. Going 
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to higher granularity and even more specific sub-processes, there appear to be dissociations 

between the phonological retrieval mechanisms of words and numbers: the phonological form 

of words is retrieved from the phonological output lexicon, whereas the phonological form of 

numbers is retrieved from a dedicated and separate phonological store (Dotan & Friedmann, 

2015). Indeed, certain types of aphasia result in different types of errors in words and numbers 

(Cohen et al., 1997; Delazer & Bartha, 2001; Dotan & Friedmann, 2015; Girelli & Delazer, 

1999; Marangolo et al., 2004, 2005). However, the essence of this separation does not seem to 

be about words versus numbers, because some other word categories – in particular, function 

words and morphological affixes – are also retrieved from dedicated phonological stores, 

similarly to number words (Dotan & Friedmann, 2015; Marangolo et al., 2005). It seems that 

the phonological retrieval of some word categories, including number words, is handled by a 

set of dedicated processes, whereas the phonological output lexicon handles the remaining 

words, which are the majority of words. 

An interesting dissociation of syntactic/structural processes in speech production was 

reported by Marangolo et al. (2004): their patient F.A. had syntactic errors in numbers, in 

particular errors in the number’s decimal structure (e.g., 5,300 → 500,300), but his word 

production was spared. A possible explanation of this dissociation is a selective deficit in the 

generation of number word frame, and that this process is involved in number production but 

not in word production. This would imply separate verbal production mechanisms for words 

and numbers, at least with respect to structural processing. However, Marangolo et al.’s 

dissociation may have other explanation too, e.g., the syntactic errors in number reading could 

result from impaired phonological retrieval.  

Articulation mechanisms, which handle oral production of the already-retrieved 

phonological forms, may serve words and numbers alike. In support of this view, word-number 

dissociations were observed for pre-articulation deficits, but an articulation disorder (apraxia) 

seems to have similar effects on number words and non-number words (Shalev, Ophir, Gvion, 

Gil, & Friedmann, 2014; Chapter 9). 

At the neural level, verbal numbers are associated with activity in the left angular gyrus, a 

region also activated in several language tasks (see a review in Dehaene et al., 2003). We are 

not aware of any brain imaging study that directly compared verbal production of numbers with 

verbal production of non-number words. 
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8.1.3.3. Structural processes 

Another interesting word-number dissociation was reported by Cipolotti (1995). This 

dissociation specifically concerned the structural mechanisms of number processing: Cipolotti’s 

patient SF made errors in number reading but his word reading was spared, i.e., he had a deficit 

in a process that specifically serves number reading. His number reading errors were primarily 

syntactic, indicating that the impaired, number-specific process was a structural process – one 

that handles the number’s decimal or verbal structure. This dissociation is interesting because it 

is the only clear evidence for a selective deficit in a structural component of number reading 

with spared word reading. Such dissociation pattern is important because this is the kind of 

dissociation required to show that the structural processes involved in number reading are 

dedicated to numbers and do not serve words. The present study shows another such structural 

dissociation: we report two women with deficits in specific structural processes of number 

reading, whose word reading is spared. 

8.2. Case descriptions 

ED and NL are two sisters with developmental difficulties as detailed below. Both are right 

handed and have corrected-to-normal vision. At the time of examination, NL was a B.A. student 

and ED worked in an administrative job and had an undergraduate degree. Their performance 

in number reading was reported in detail in Chapter 7. 

Table 8.1. Background information and performance in general tasks. 

   ED   NL 

Age 31 24 

Education years 15 14 

Memory spans   

 Digit (free recall) 5+ 5+ 

 Digit (matching) 7 7 

 Word (free recall) 4½ 5 

 Word (matching) 7 7 

Dictations (% errors)   

 Writing 50 words 2% 2% 

 Writing 50 numbers 2% 20% 

Comparison to control group: + p < .1 

Table 8.1 shows their background information and their normal-level performance in 

phonological short-term memory tasks (FriGvi battery, Friedmann & Gvion, 2002). They also 

performed well in writing words to dictation (TILTAN battery, Friedmann et al., 2007). In 
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writing numbers (digit strings) to dictation (MAYIM battery, Dotan & Friedmann, 2014), NL 

had many errors (20%), all of which were syntactic (number length, the position of the digit 0). 

ED did not have many errors (2%), but she often hesitated when writing the digit 0, suggesting 

a difficulty similar to NL’s. 

8.3. Procedure 

The participants were tested in a series of 1- to 2-hour sessions in a quiet room in our lab. In 

the reading tasks, stimuli were presented on paper with no time limit. An error followed by a 

self-correction was classified as an error in our coding of responses. 

Control participants with outlier error rates were excluded. The threshold for outlier was 

defined per task as exceeding the 75th percentile of error rates by more than 150% the inter-

quartile distance. Individual participants were compared to control groups using Crawford and 

Garthwaite's (2002) one-tailed t-test. In cases of a control group ceiling effect (mean error rate 

≤ 2%), the low variance does not allow for a reliable statistical comparison so we arbitrarily 

decided that 7% errors or more would be considered as impaired performance. 

8.4. Experimental investigation 

ED’s and NL’s number reading was described in detail in Chapter 7. The detailed assessment 

showed that both of them had impaired number reading. In particular, both were impaired in the 

numeric-visual analyzer, in the triplet parsing function of the structural analysis. NL was also 

impaired in the structural-verbal production stage, in the generation of number word frames.  

Do these components, which were found impaired in our participants' number reading, serve 

both number reading and word reading? If so, they should affect word reading as well. If, 

however, our participants show a deficit only in number reading, this would indicate separate 

components for number and word reading.  

To answer this question, we examined ED’s and NL's word reading using several tasks. 

First, because both ED and NL were impaired in the numeric-visual analyzer, we examined their 

visual analysis processes of word reading. Their impairment in the visual analysis of numbers 

was in the structural analysis component, so we made sure to use tasks that tap the structural 

functions of the orthographic-visual analyzer, in particular the analysis of the morphological 

structure of words.  

Second, because NL was impaired also in verbal production of numbers, we also examined 

the participants’ verbal production of words. Here too NL’s deficit in numbers was in structural 
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processes (number word frame generation), so we used word production tasks that tap structural 

processes, in particular the oral production of morphologically complex words. 

8.4.1. Orthographic-visual analyzer 

To examine ED’s and NL’s orthographic-visual analyzer, we used two kinds of tasks: one 

type of task required reading aloud of words. These tasks rely on the orthographic-visual 

analyzer as well as on verbal production. Another set type of task involved presentation of 

written words but did not require verbal production. 

8.4.1.1. Method 

ED and NL read aloud a total of 928 words and 40 nonwords, administered as several tests. 

First, we used oral reading screening tasks from the TILTAN battery for the identification of 

subtypes of dyslexia (Friedmann & Gvion, 2003): oral reading of single words, word pairs, and 

nonwords. These tasks include words of various types, which can reveal different types of 

dyslexia (and, specifically for our purpose in the current study, can assess the performance of 

the various components of the word reading process): irregular words and potentiophones8 for 

the identification of surface dyslexia (and assessment of the performance of the lexical route); 

nonwords for the identification of phonological and deep dyslexia (and for the assessment of 

the performance of the sub-lexical route); morphologically complex words for identifying deep 

dyslexia, orthographic input buffer or phonological output buffer deficits and for the assessment 

of morphological decomposition and composition (Cohen et al., 1994; Dotan & Friedmann, 

2015; Job & Sartori, 1984; Reznick & Friedmann, 2009, 2015; Stuart & Howard, 1995; Temple, 

2003); words (and nonwords) that can be read as other words by neglecting one side of the word, 

for the identification of neglect dyslexia (Friedmann & Nachman-Katz, 2004; Haywood & 

Coltheart, 2001; Patterson & Wilson, 1990; Reznick & Friedmann, 2015); words with many 

orthographic neighbors for visual dyslexia (Cuetos & Ellis, 1999; Friedmann et al., 2012; 

Lambon-Ralph & Ellis, 1997; Marshall & Newcombe, 1973); word pairs in which between-

word migration creates other existing words for attentional dyslexia (Friedmann, Kerbel, et al., 

2010; Hall, Humphreys, & Cooper, 2001; Humphreys & Mayall, 2001; Mayall & Humphreys, 

2002; Saffran & Coslett, 1996; Shallice & Warrington, 1977b); words that allow for vowel 

                                                 
8 Potentiophones are pairs of words contain homophonic letters (and are usually underspecified for vowels). If read 
solely via the grapheme-to-phoneme conversion route, one word can be read aloud instead of the other. For 
example, the English word now, when read aloud via the sublexical route, may erroneously be pronounced like the 
words no and know (Friedmann & Lukov, 2008). 
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errors, for vowel letter dyslexia (Khentov-Krauss & Friedmann, 2011); and migratable words 

and nonwords, for the identification of letter position dyslexia9 (Friedmann, Dotan, & Rahamim, 

2010; Friedmann & Gvion, 2001; Friedmann & Haddad-Hanna, 2012; Friedmann & Rahamim, 

2007; Peressotti & Grainger, 1995).  

ED and NL read two additional lists of words. One list included migratable words, to tap 

letter position encoding. Another list was a test design to assess the effect of morphologically 

structure of the target word on letter transpositions (Friedmann et al., 2015). This list included 

500 words, most of which were morphologically complex. 

On top of the reading aloud tasks, ED and NL also performed two lexical decision tasks, 

which require orthographic-visual analysis but do not require verbal production. One task 

focused on letter position encoding – it included 30 words, 15 migratable nonwords, and 15 

non-migratable nonwords. Another task focused on morphological encoding – it included 45 

words and 60 nonwords, all morphologically complex. In both tasks, words were printed on 

paper and the participants were asked to circle the existing words. 

8.4.1.2. Results 

In all the word reading tasks, both ED and NL performed very well, and their error rates 

were within the norm for their age (Table 8.2). This forms a clear dissociation between their 

visual analysis of digit strings, which was impaired, and their visual analysis of letter strings, 

which was completely normal. This dissociation was demonstrated both by tasks that 

specifically tapped the visual analysis stage and by tasks that required oral reading. NL’s reading 

patterns further show another dissociation, between her impaired verbal production of numbers 

and her intact verbal production of words; this dissociation is discussed in the next section. 

The dissociation can clearly be tracked back to structural processes. ED’s and NL’s numeric-

visual analyzer impairment was in structural processing. Their good performance in the words 

tasks demonstrated that their orthographic-visual analyzer was able to process correctly the 

morphological structure of words. As a Semitic language, Hebrew has a rich morphology – all 

verbs and most nouns and adjectives in Hebrew are constructed from a root and a morphological 

template and/or inflection. Hebrew also has deep orthography, including many degrees of 

freedom that are derived from fact that vowels are only partially represented in the orthographic 

forms, stress is not represented at all, and 13 letters can be converted to more than one phoneme 

                                                 
9 In migratable words/nonwords, interior letters can be transposed in a way that results in another existing word. 
Such words are prone for errors in case of letter position dyslexia. 
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(Friedmann & Lukov, 2008). Hebrew’s deep morphology and deep orthography make it 

virtually impossible to read morphologically complex words correctly without processing their 

morphological structure. Still, ED and NL were able to do this easily: each of them read aloud 

712 morphologically complex words, and they made no more errors on these words than did the 

control participants. 

 
Table 8.2. Error percentages in tasks that tap orthographic-visual analysis and verbal production of words. 

Both participants had low error rates in all tasks. 

  No. of  

itemsa 

  Control group 

 Task ED NL Errors (SD) n Age (SD) 

R
e

a
d

in
g

 

Read words 136 (76) 1 2 1.7 (1.5) 372 28;7 (7;0) 

Read nonwords  40 0 8 4.1 (4.2) 372 28;7 (7;0) 

Read word pairs 30x2 (52) 0 3 2.5 (2.4) 372 28;7 (7;0) 

Read migratable words 232 (182) 2 1 2.4 (1.8) 192 18+ 

Read morphologically complex words 500 (402) 2 2 1.8 (0.4) 10 30;5 (13) 

V
is

u
a

l Lexical decision       

 Migratable 60 (11) 0 3 0.3 (0.6) 19 18+ 

 Morphologically complex 105 (45) 0 0 1.0 (0.9) 24 28;8 (4;2) 

V
e

rb
a

l Picture naming 100 (27) 2 3 2.3 (1.7) 87 20-40 

Verb elicitation 24 (24) 0 0 0.2 (0.6) 18 38;11 (14;5) 

Nonword repetition 48 2 2 4.4 (3.5) 20 31;2 (8;9) 

a The parentheses indicate the number of morphologically complex words in the task 

8.4.2. Verbal production of words 

8.4.2.1. Method 

Because NL had a deficit in the verbal production mechanism of numbers, we wanted also 

to examine directly her verbal production of words. Her good oral reading was already a strong 

indication that her verbal production was intact. To examine it further we used three tasks that 

involve verbal production without reading. In a picture naming task (SHEMESH test, Biran & 

Friedmann, 2004), the participants were presented with 100 object pictures and asked to retrieve 

their names. In a nonword repetition task (from the BLIP battery, Friedmann, 2003), they 

repeated 53 nonwords with 1-4 syllables. Finally, in the inflected verb elicitation task, they had 

to orally complete a missing verb in a sentence by inflecting the verb to agree with the sentence 
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on tense, gender, and plural (BAFLA, Friedmann, 1998). This third task was used to test directly 

their production of morphologically complex words. 

8.4.2.2. Results 

Again, ED and NL performed well in the word production tasks: their error rates were within 

the norm for their age (Table 8.2). These results show another dissociation between numbers 

and words: NL had a deficit in number production, in a structural process (the generation of 

number word frames), but she showed good production of words, even in the task that taps 

structural (morphological) processing. This provides a specific dissociation between the 

structural processing of numbers and words. 

8.5. Discussion of Chapter 8 

The comparison of number reading with word reading showed clear dissociations. First, both 

ED and NL were impaired in the visual analysis of digit strings, but their orthographic-visual 

analysis of letter strings was perfectly intact. Second, NL was impaired in verbal production of 

numbers, but had good verbal production of words (and nonwords). ED and NL therefore join 

the small group of reported cases with number-specific reading deficits, which do not affect 

word reading (Basso & Beschin, 2000; Cipolotti, 1995; Cipolotti et al., 1995; Marangolo et al., 

2004; Priftis et al., 2013; Temple, 1989). 

Both number impairments specifically affected structural processing. In the visual analysis 

of digit strings, ED’s and NL’s deficit was in a sub-process that encodes the number’s decimal 

structure (in particular, triplet parsing). In verbal production, NL’s deficit was in the sub-process 

that generates number word frames – the number’s verbal structure. The finding that these 

deficits dissociated from word reading shows that these two structural processes are specialized 

for numbers and do not handle words. The parallel structural process for word reading would 

be morphological decomposition and composition for morphologically complex words, and 

these processes were intact for both participants. Importantly, both specific dissociations were 

not yet reported in previous studies, and only a single case of word-number dissociation in 

specific structural processes was previously reported (Cipolotti, 1995). This suggests that the 

structural processing of numbers is done by dedicated processes, which do not serve word 

reading, and in particular do not process the morphological structure of words.  

Our findings, in conjunction with previous reports on word-number dissociations, indicate 

that most of the processes involved in number reading, from visual analysis to phonological 
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retrieval, are dedicated to numbers and are not a part of the word-reading pathway. In the visual 

analysis stage, position encoding is separate for letters and digits (Friedmann, Dotan, & 

Rahamim, 2010), and so are digit identity encoding (Abboud et al., 2015; Baker et al., 2007; 

Grotheer et al., 2016; Hannagan et al., 2015; Park et al., 2012; Shum et al., 2013) and triplet 

parsing (ED, NL). In verbal production, the generation of number word frames is a number-

specific process (NL), and phonological retrieval is done in different ways for number words 

and other words (Cohen et al., 1997; Dotan & Friedmann, 2015; Marangolo et al., 2004, 2005). 

The only number-processing components for which dissociations with word processing have 

not yet been studied are the numeric-visual analyzer sub-processes that encode the 0 positions 

and the number length. Some possible analogous processes in the visual analysis of words may 

be the encoding of word length (analogous to the number length) and the detection of vowel 

letters (analogous to the detection of 0's in a number, see Khentov-Krauss & Friedmann, 2011 

for vowel-specific processing in reading). If future dissociations are found between 0 detection 

and number length on the one hand and word reading on the other, this would indicate 

completely separate processing pathways for word reading and number reading.  

From a clinical perspective, our findings indicate that word reading disorders (dyslexia) 

should be treated as a separate clinical situation from number reading disorders (numbers-

dyslexia, which may be termed “diglexia”): a person may have dyslexia for words, for numbers, 

or for both. The two situations should be assessed separately of each other – we cannot 

automatically conclude from the ability to read numbers to the ability to read words and vice 

versa. Similarly, different treatment methods may apply to reading of words and numbers, and 

we cannot make the assumption that treating one would generalize to the other. 

Given that word reading and number reading are done in separate cognitive pathways, it 

could be informative to examine the similarities and differences between these two pathways. 

One important difference between words and numbers is the existence of lexicons. Word 

reading heavily relies on lexical knowledge, stored in orthographic and phonological lexicons. 

Conversely, there are no lexicons in the number reading model, except the knowledge of single 

digits and the phonological storage of single number words. This view is supported by studies 

showing that in digit-to-quantity conversion of numbers as short as two digits, the number is 

still processed as separate digits rather than being recognized as one lexical unit (Nuerk & 

Willmes, 2005; Chapter 4). Still, an extreme assumption, according to which number reading 

involves no lexical knowledge whatsoever, is apparently incorrect: It seems that at least some 
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multidigit numbers that have a particular meaning (year of birth, car model, etc.) may be stored 

and identified as a whole. Cohen et al. (1994) reported a brain-injured patient with severe 

difficulties in number reading, who could still read familiar numbers – presumably via a 

semantic pathway (visual analysis → semantic system → verbal production). This finding still 

does not show the existence of phonological/orthographic lexicons for multi-digit numbers, such 

as the lexicons we have for words, yet it does demonstrate a different aspect of lexical processing 

of numbers. Future research would be required to determine the exact role of lexical knowledge 

in number processing. 

Another potential difference between word reading and number reading concerns the way 

letters or digits are associated with the multi-character string to which they belong. When 

reading words, the visual orthographic-analyzer includes a dedicated process that binds each 

letter to the appropriate word (Coltheart, 1981; Ellis, 1993; Ellis & Young, 1996). Malfunctions 

of this process yield letter migrations between words, e.g., reading “rear dock” as “dear rock”, 

a situation known as attentional dyslexia (Friedmann, Kerbel, & Shvimer, 2010; Humphreys & 

Mayall, 2001; Saffran & Coslett, 1996). An open question is whether an analogous digit-to-

number binding process exists in number reading. On one hand, the high degree of homology 

between the orthographic-visual analyzer and the numeric-visual analyzer (both have identity, 

position, and structure encoders) raises the possibility that the letter-to-word binding process 

would also have a homologous counterpart in number reading. On the other hand, it is 

completely unclear whether number reading really requires a binding process of this kind, 

because reading words involves rapid scanning of a long sequence of words, whereas rapid 

scanning of a sequence of numbers is not a common activity. It is also an open question whether, 

if such digit-to-number binding function does exist, it is one and the same with the letter-to-

word binding function that applies in word reading. To date, no study examined the notion of 

digit-to-number binding, but preliminary data from our lab indicate that digit-to-number binding 

can be intact even for individuals with attentional dyslexia, whose letter-to-word binding is 

impaired (Lukov & Friedmann, unpublished data). 

An important point that stands out from the comparison between word reading and number 

reading mechanisms is the role of structural processing. For words as well as for numbers, the 

structure of the character string (morphological or decimal) is extracted during an early stage of 

visual analysis (Beyersmann et al., 2011; Longtin & Meunier, 2005; McCormick et al., 2008, 

2009; Rastle et al., 2004; Reznick & Friedmann, 2015; Taft & Forster, 1975; Chapter 7). This 
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structural information may be used to help the remaining visual analysis processes, and could 

also be communicated immediately to the production processes. Similarly, the structure of the 

verbal stimulus (morphological for words, decimal for multi-digit verbal numbers) is encoded 

in the verbal production processes as late as phonological retrieval. This role of structural 

processing suggests that reading is not a simple mechanism that merely scans a series of 

characters in visual input and processes a series of phonemes in verbal output. Rather, reading 

has dedicated processes to represent visual and verbal structures, and these processes are tailored 

to the type of stimulus being processed – words or numbers. 

Why does our cognitive system allocate two separate processing pathways to words and 

numbers, two cultural inventions that are very recent in evolutionary terms?  Amedi, Dehaene, 

and collaborators (Abboud et al., 2015; Hannagan et al., 2015) considered this question with 

respect to the mechanisms of visual analysis of words and numbers which, as they showed, are 

implemented in different brain areas – the so-called visual word form area (VWFA) and the 

visual number form area (VNFA). They pointed out that the reason for this neural separation is 

unlikely to be the visual properties of letters versus digits, because letters and digits are visually 

relatively similar (and in their experiment, the stimuli were identical). They proposed that the 

reason for neural separation between VWFA and VNFA is the connectivity patterns of these 

brain areas with the rest of the brain, in particular with the regions that make use of the parsed 

visual information. The VWFA has better connectivity with language areas, which require the 

parsed letters information, whereas the VNFA has better connectivity with quantity 

representation areas (IPS), which require the parsed digits information. The architecture we 

proposed here, where reading is dominated by structural processing, offers a complementary 

explanation for the separation of words and numbers. Although the visual properties of letters 

and digits are quite similar to each other, the structural properties of letter strings and digit 

strings are very different from each other: the decimal structure of digits is completely different 

from the morphological structure of words. Consequently, a dedicated visual analysis process 

that extracts the morphological structure of words could be very different from a dedicated 

visual analysis process that extracts the decimal structure of numbers. These differences may 

motivate the allocation of different cognitive and neural circuits to the visual analysis of words 

and numbers. When a processing stage is structure-insensitive, it may be shared for words and 

numbers, as seems to be the case for the processes that precede the numeric/orthographic visual 

analyzers (McCloskey & Schubert, 2014) and for post-phonological-retrieval processes (Shalev 
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et al., 2014). Note that the structural differences merely provide motivation for separating words 

from numbers – they do not necessarily favor the allocation of words and number processing to 

specific brain regions. The allocation of a specific cognitive function to a specific brain area 

may be driven by other factors, such as neural connectivity patterns. 

One thing is clear: the specialization of different cognitive processes to words and numbers 

is quite rigid. The growing number of word-number dissociations demonstrates that at least in 

some cases, well-functioning processing of words cannot overtake an impaired processing of 

numbers, and vice versa, even when the impairment is developmental and presumably existed 

from birth. This rigidity of word-number separation accords with the rigidity we observe within 

each of these domains: an intact process is sometimes unable to compensate for an impaired 

process, even when two processes encode information that appears to be redundant (Chapter 7). 

Future studies may elaborate further on the cognitive and neural factors that drive the 

development of this neural and cognitive specialization. 
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9. Breaking down number syntax: Spared comprehension of 

multi-digit numbers in a patient with impaired digit-to-

word conversion° 

Abstract. Can the meaning of two-digit Arabic numbers be accessed independently of their verbal-

phonological representations? To answer this question we explored the number processing of ZN, an 

aphasic patient with a syntactic deficit in digit-to-verbal transcoding, who could hardly read aloud two-

digit numbers, but could read them as single digits (“four, two”). Neuropsychological examination 

showed that ZN’s deficit was neither in digit input nor in phonological output processes, as he could 

copy and repeat two-digit numbers. His deficit thus lied in a central process that converts digits to 

abstract number words and sends this information to phonological retrieval processes. Crucially, in 

spite of this deficit in number transcoding, ZN’s two-digit comprehension was spared in several ways: 

(1) he could calculate two-digit additions; (2) he showed good performance in a two-digit comparison 

task, and a continuous distance effect; and (3) his performance in a task of mapping numbers to 

positions on an unmarked number line showed a logarithmic (nonlinear) factor, indicating that he 

represented two-digit Arabic numbers as holistic two-digit quantities. Thus, at least these aspects of 

number comprehension can be performed without converting the two-digit number from digits to 

verbal representation. 

9.1. Introduction 

Benjamin Lee Whorf suggested that language lies at the core of human thought and shapes 

our concepts (Whorf, 1940). In the domain of arithmetic, this view has been explicitly refuted 

by showing that a broad array of numerical abilities are spontaneously present even without 

verbal representation of numbers. This has been demonstrated in animals, preverbal infants, and 

adults from language communities with a reduced lexicon of number words (Brannon & 

Terrace, 2000; Dehaene et al., 2008; Dehaene, Molko, Cohen, & Wilson, 2004; Feigenson et 

al., 2004; Hauser, Carey, & Hauser, 2000; Nieder & Dehaene, 2009; Viswanathan & Nieder, 

2013). Yet a narrower hypothesis may still be tenable, according to which some higher 

mathematical abilities are tightly coupled with language: a specifically human recursive 

computation mechanism may underlie syntactic processes, not only in language, but in other 

cognitive processes, including the way we represent multi-digit numbers and mathematical 

expressions (Hauser et al., 2002; Houdé & Tzourio-Mazoyer, 2003). Even this view of “global 

                                                 
° This chapter was published as Dotan, D., Friedmann, N., & Dehaene, S. (2014). Breaking down number syntax: 
Spared comprehension of multi-digit numbers in a patient with impaired digit-to-word conversion. Cortex, 59, 62–
73. doi:10.1016/j.cortex.2014.07.005. The text here is identical with the published article, except reformatting and 
removing some parts that would, if remained, repeat other sections of this dissertation. 
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syntax”, however, is challenged by certain findings: brain areas and functional processes that 

characterize language syntax are dissociable from those that support many combinatorial 

mathematical processes, including the processing of algebraic operations (Monti, Parsons, & 

Osherson, 2012) and mathematical expressions (Maruyama, Pallier, Jobert, Sigman, & 

Dehaene, 2012), multi-digit number naming (Brysbaert, Fias, & Noël, 1998), transcoding, and 

multi-digit calculation (Varley, Klessinger, Romanowski, & Siegal, 2005).  

The present chapter aims to further probe this issue by analyzing dissociations between 

different syntactic processes within the domain of number cognition in an aphasic patient with 

impaired conversion of Arabic numbers to words. Specifically, we asked whether the meaning 

of two-digit Arabic numbers can be accessed independently of their verbal representations when 

the syntactic mechanisms converting numbers to words are impaired. Our goal is to examine in 

detail the locus and nature of the patient's impairment in transcoding, and to evaluate his number 

meaning abilities and syntactic processes of number comprehension using various tasks. 

Numbers have three distinct representations: they can be coded in digits as Arabic 

numerals (68), as number words (sixty-eight), or as quantities, the dominant "meaning" of the 

number. These different cognitive representations are dissociable (Gordon, 2004; Lemer et al., 

2003), can be selectively impaired (Cohen & Dehaene, 2000), and are implemented in different 

brain areas (Dehaene et al., 2003). However, these representations are tightly related: symbolic 

representations of numbers (words, digits) are associated with the corresponding quantities, 

which can be represented spatially along a left-to-right mental number line (Dehaene et al., 

1993; Loetscher et al., 2010; Moyer & Landauer, 1967; Ruiz Fernández et al., 2011; Shaki et 

al., 2009). 

Multi-digit Arabic numerals enter into several types of internal conversion processes. 

Converting multi-digit Arabic numbers to number words is a syntactic process that requires 

encoding the relative positions of the digits according to the base-10 system, converting each 

digit to a word according to its position, and combining the words, sometimes with the addition 

of coordination markers (“and”). This syntactic sub-process can be selectively impaired 

(Cipolotti, 1995; Noël & Seron, 1993). But multi-digit Arabic numbers can also be quickly 

converted into the corresponding quantity (Dehaene et al., 1990; Reynvoet & Brysbaert, 1999; 

and Section A of this dissertation). Computing the quantity associated with an Arabic multi-

digit number requires encoding the relative positions of the digits and combining their quantities 

according to the base-10 principles. Thus, syntactic operations are required when converting 
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multi-digit Arabic numerals either to verbal number words or to quantities. Is a single syntactic 

process involved in both conversion processes? The present study addresses one aspect of this 

question: we asked whether the conversion of a two-digit Arabic number into a quantity can be 

spared when the syntactic operation involved in forming a verbal representation of the number 

is impaired. 

The triple-code model of number processing (Dehaene, 1992; Dehaene & Cohen, 1995) 

predicts that there is a direct conversion route from Arabic inputs to the quantity representation, 

independent of the Arabic-to-verbal route. However, the verbal representation of numbers is 

also thought to play a crucial role even in tasks that do not necessarily involve overt 

comprehension and production of verbal numbers, e.g., memorization of arithmetic facts (Cohen 

& Dehaene, 2000; Dehaene, 1992; Dehaene & Cohen, 1997). The relation between verbal 

representations and quantity is sometimes surprisingly complex, to the extent that quantity 

encoding may be affected by the language in which a verbal number is presented, even in the 

same person: Dehaene et al. (2008) investigated individuals from an Amazonian culture with 

little or no formal mathematical education, and found that their quantity processing showed a 

more linear pattern when numbers were presented in a Western second language (Portuguese) 

than in their native tongue, Mundurucu, where numerals yielded a more logarithmic pattern. 

To separate these two possibilities, and probe whether Arabic-to-quantity conversion makes 

use of a syntactic process that is also needed for Arabic-to-verbal conversion, we examined the 

various number abilities of ZN, an aphasic patient who has a selective deficit in verbal number 

production. This deficit prevents him from converting multi-digit numbers into verbal-

phonological forms, and renders him almost completely unable to say them aloud. We tested 

whether, in spite of this deficit, he can encode the holistic quantity of two-digit Arabic numbers. 

Another question addressed in this study is whether multi-digit addition depends upon 

verbal-phonological forms of number words. Rote knowledge of arithmetic facts relies on the 

verbal representation of numbers (Cohen & Dehaene, 2000; Dehaene, 1992; Dehaene & Cohen, 

1997; Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999). Multi-digit addition too can be 

affected by verbal factors such as the grammatical structure of number words (Colomé, Laka, 

& Sebastián-Gallés, 2010), though not always (Brysbaert et al., 1998). Phonological 

representations may be involved in multi-digit addition, but are probably not necessary for it 

(Klessinger, Szczerbinski, & Varley, 2012). The present case study of ZN extends Klessinger 

et al.’s conclusions by examining a dissociation between multi-digit addition and the verbal 
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representation of numbers: we tested whether ZN could solve addition problems that involve 

two-digit numbers in spite of his severe impairment in the conversion of Arabic numbers to 

verbal representation. 

9.2. Case Description 

9.2.1. Overview 

ZN, a 73 years old man, used to work as an engineer, a job that involved a lot of number 

processing. When he was 72 he had a subacute infarct in the left corona radiata, following which 

he lost much of his speech, and was diagnosed with aphasia, severe apraxia of speech, impaired 

comprehension, dyslexia, dysgraphia, and agrammatism. He started language rehabilitation that 

focused on articulation, lexical retrieval, and grammatical processing. By the time we met him, 

eleven months after his stroke, he still had severe difficulties in comprehension and production 

of speech. Until that time he was neither diagnosed nor treated for number processing. 

ZN is right-handed and wears reading glasses. His mother tongue is Hebrew, and all tests 

were conducted in this language. He is an engineer with B.Sc. degree. We tested him in a series 

of 45-minute sessions that took place in a quiet room in his home. The sequence of sessions 

lasted several months, but crucial tasks (hereby described) of number reading and 

comprehension were administered in intertwined sessions within a short period of less than 3 

months.  

9.2.2. Language Assessment 

ZN’s lexical retrieval was impaired. When asked to name 100 objects in a picture naming 

task (SHEMESH, Biran & Friedmann, 2004), he made phonological errors and neologisms in 

45/100 items. These could be explained by his apraxia of speech, but he also failed to make any 

verbal response to 40 items, and made 13 semantic errors – a finding that indicates that on top 

of his apraxia, he also had a deficit in an earlier stage of lexical retrieval (Friedmann et al., 

2013). 

His working memory was assessed in a digit span task (Friedmann & Gvion, 2002; Gvion 

& Friedmann, 2012) in which he answered by pointing to the digits 0-9 on paper. His digit span 

was 3, significantly lower than an age-matched control group (z = -3.06, p = .001; control data 

from Gvion and Friedmann, 2012). 

ZN had severe morpho-syntactic difficulties. In a picture-to-sentence matching task 

(BAFLA, Friedmann, 1998), his performance was at chance level not only in object and subject 
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relative clauses (18/40 errors), but even in simple subject-verb-object sentences (14/30 errors). 

In a sentence completion task, which required him to inflect verbs for tense and agreement 

(BAFLA, Friedmann, 1998), he had inflection errors in 10/24 items and failed to respond to 5 

items. The morphological difficulty was present not only in verbs but also in nouns: in a picture-

naming task that required ZN to inflect morphologically complex nouns, he made morphological 

errors (substitution or omission of the morphological affix) in 7/20 items and failed to respond 

to 2 items. 

His reading aloud was impaired too. In reading 49 words from the TILTAN dyslexia 

screening test (TILTAN, Friedmann & Gvion, 2003), he made 37 errors and failed to respond 

to 6 additional words. His errors were phonological paraphasias (phonemic and formal, in 20 

items), neologisms (10 items), morphological errors (8 items), and sublexical reading (surface-

dyslexia-like errors, 4 items). His word writing was severely impaired too (8/11 errors). 

9.3. Assessment of symbolic number processing 

9.3.1. Input and output of Arabic numbers 

ZN’s ability to read and write numbers as digits was assessed using two tasks: number 

dictation and delayed copying of numbers. 

Number dictation. The experimenter said aloud the 40 numbers between 1 and 40 in 

random order, one at a time, and ZN wrote them as Arabic numerals. He performed this task 

without any error (40/40 correct). 

Delayed copying. ZN saw twenty 2-digit numbers on the computer screen, one at a time. 

Each number was presented for one second, and after it disappeared, ZN was requested to write 

it down on paper. To eliminate possible verbal rehearsal, ZN was required to say aloud the first 

two Hebrew alphabet letters (alef, bet) after the target number disappeared from the screen and 

before he wrote it down. In this task too, his performance was flawless (20/20 correct). 

These two tasks demonstrate ZN’s ability to write two-digit numbers in Arabic notation, 

which stands in contrast to his complete inability to write words (Fisher’s p < .001 in number 

dictation vs. word writing). The delayed copying task further shows that his Arabic number 

input is intact: he correctly encoded the identity and the relative positions of the digits in the 

two-digit number, and could memorize the number until writing it down. The dictation task 

shows his preserved ability of converting number words to digits. 
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9.3.2. Production of verbal number words 

Next, we assessed ZN’s ability to produce number words orally. In the following tasks we 

classified responses as correct whenever the target number was produced, even if it was not 

articulated completely accurately (e.g., 35 → “thirby five”). This is because our focus in this 

section was not on examining ZN’s articulation, which is known to be impaired by his apraxia 

of speech, but on examining earlier processing stages involved in number processing. Thus, 

phonological errors were not included in the overall error rates10. 

Reading aloud 2-digit numbers. ZN saw a list of 33 two-digit numbers and was asked to 

read them aloud. The numbers were administered as three different lists (of eight, five, and 20 

numbers) in separate sessions. Five of the numbers were teens and the rest were larger than 20. 

None of the numbers included the digit zero. The first two lists were printed on paper in Arial 

22 font. The third list (of 20 numbers) was read from the computer screen, and the numbers 

were presented for one second. 

In marked contrast to his good number writing, ZN’s reading aloud was very poor and he 

produced correctly only 7 of the 33 numbers. The most striking error pattern was that he read 

most of the numbers as two separate digits (e.g., 15 → one five, or 47 → four seven). This 

occurred for 23 of the 33 items (70%). He was able to produce the decade name for only 9 of 

the 28 numbers larger than 21, and could not produce the teen form for any of the five teen 

numbers that were presented. On top of that, he had other errors too: he omitted a digit in two 

numbers, made lexical within-class errors in 14 numbers (e.g., 63 → seventy three), and class 

errors in 2 numbers (e.g., 14 → forty; in Hebrew, some class errors are not phonologically 

similar to the target, and this was the case with these two errors).  

Reading 2-digit numbers as single digits. ZN was presented with a list of the 40 numbers 

from 1 to 40, appearing in random order, and was asked to read them aloud as single digits (e.g., 

54 → five, four) – i.e., a total of 71 digit names. The numbers were printed on paper in Arial 22 

font. ZN performed well in this task: he made only one lexical error, and another error that could 

be interpreted either as lexical or as phonological, with a total of 69/71 correct digit names. 

Thus, although ZN was able to identify and name the digits in two-digit numbers, he was 

unable to say aloud two-digit numbers when he was asked to produce the number name with a 

                                                 
10 In reading aloud 2-digit numbers (the task hereby described), ZN made 15 phonological errors of the 25 numbers 
that were encoded for phonological errors (we had technical problems with the audio recording of the remaining 8 
items, so we do not know how many phonological errors they included). In reading 2-digit numbers as single digits 
he made phonological errors in 20/71 digits. In number repetition he made phonological errors in 30/40 items. 
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valid decade+unit syntactic structure (5% vs. 79% errors, χ2 = 41.6, p < .001). This pattern 

persists even when comparing only the 15 two-digit numbers that appeared in both tasks (one 

error in the digit reading task, but 13 errors when reading the numbers with a valid syntactic 

structure, Fisher’s p < .001). Namely, when he read a number as a two-digit number, he failed, 

but when he read the exact same number digit by digit, without the need to process its syntax, 

he succeeded. In the next section, we explore the origin of this multi-digit number production 

deficit. 

9.3.3. The origin of ZN’s difficulty in verbal number production 

The results show that ZN has a deficit in transcoding Arabic numbers to number words that 

selectively affects his ability to verbally produce two-digit (and multi-digit) numbers. This 

deficit is not in the input stages, as demonstrated by ZN’s good performance in the delayed 

copying task, by his ability to read two-digit numbers when required to say only the digit names, 

and, as we will show below (Section 9.4.1), by his spared ability to perform two-digit additions. 

One crucial result in this matter is his good production of single digits (e.g., “four, three” for 

43). Is it the case that ZN’s deficit is in the production stage, and he cannot retrieve teen and 

decade number words? If this were the case, we would expect him to fail also in other tasks that 

require multi-digit number production, such as number repetition. We therefore tested his multi-

digit number repetition. 

Number repetition. The experimenter read aloud the numbers between 1 and 40 in random 

order and ZN was asked to repeat the number. ZN’s ability to repeat numbers correctly (or only 

with phonological errors) was good, and clearly superior to his performance in the number 

reading task: he correctly repeated 37 of the 40 numbers, and made one lexical error, one error 

that may be lexical or syntactic, and one lexical or phonological error. Importantly, in the 

repetition task ZN never tried to produce the digit names instead of the number name, like he so 

often did in the number reading task. 
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Fig. 9.1. An overview of the numerical processes that were tested in ZN. The italic text denotes the 

tasks that indicate which processes are spared and which are impaired. 

Any task that requires number production involves retrieval of the phonological forms of 

the number words from a phonological storage in the phonological processing stages (Dotan & 

Friedmann, 2015; McCloskey et al., 1986; Oppenheim, Dell, & Schwartz, 2010). ZN’s good 

repetition shows that he was able to retrieve the phonological forms of the number words and 

to articulate them (even if with phonological errors). Thus, his phonological retrieval and 

articulation stages are not the source of his difficulty to produce two-digit number words. The 

deficit that caused this difficulty must be in a pre-phonological processing stage, between the 

input of the written numbers and their production. This conclusion, and the evidence supporting 

it, is visually summarized in Fig. 9.1. 

Number-like nonword repetition. Finally, we ruled out a possibility that ZN’s good 

performance in the number repetition task was due to phoneme-by-phoneme repetition, and 

therefore may not indicate that he was able to retrieve the phonological representations of 

numbers. To assess this possibility, we compared his performance in number repetition with a 

nonword repetition task, which is undoubtedly performed phoneme-by-phoneme, via the 

sublexical repetition route. For each number word, a corresponding nonword was created with 
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matched length, syllable structure, stress position, morphological structure, CV structure, and 

consonant clusters. For example, for the number 34, /shloshim ve-arba/, the matched nonword 

was /frifol ve-umdi/. The order of the stimuli was also the same in both tasks. This created a list 

of 40 number-like nonwords.  

The comparison between the repetition of numbers and number-like nonwords revealed very 

different patterns. ZN made significantly more consonant substitutions in nonword repetition 

than in number repetition (13% vs. 4% out of 180 consonants, χ2 = 9.3, one-tailed p = .001). 

This indicates that the two tasks were performed via different processing pathways: the number 

repetition task involved a lexical repetition route, which induced a smaller amount of 

phonological errors than the sublexical repetition route. The findings therefore refute the 

possibility that ZN repeated numbers sub-lexically, and support the conclusion that he can 

retrieve number words, including teens and decades, when the access to the phonological 

number words does not involve reading of multi-digit Arabic number, and hence, does not 

require digit-to-verbal transcoding. 

Another finding that refutes a strictly sublexical number repetition hypothesis concerns the 

way ZN combined the decade and unit names. In Hebrew, the decade and unit number words 

are combined by the function word “and” (i.e., we say “thirty and two” rather than “thirty two”). 

The Hebrew word “and” is generally pronounced as /ve/, but in some phonological contexts it 

is considered normatively "more correct" or higher register to pronounce it as /u/. In the 

repetition task, the experimenter used the /u/ pronunciation in three occasions, and in all cases 

ZN repeated the number using the /ve/ pronunciation, thereby showing that he did not process 

the function word merely as a sequence of phonemes, but treated it as a lexical/syntactic 

element. Together with the different patterns of phonological errors in number and nonword 

repetition, these results indicate that ZN did not use a phoneme-by-phoneme strategy for 

repeating numbers. Last, several studies of number production mechanisms render the 

sublexical repetition hypothesis unlikely (Bencini et al., 2011; Cohen et al., 1997; Dotan & 

Friedmann, 2015): these studies investigated aphasic patients with phonological deficits and 

showed that even in a very late stage of speech production, the phonological output buffer, 

whole number words are processed as atomic phonological units rather than as separate 

phonemes. 

The above experiments show that ZN has a deficit in one of the modules along the Arabic-

to-verbal transcoding route, which selectively affects his ability to say two-digit (or multi-digit) 
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numbers, while sparing single-digit numbers. The deficit is in a stage later than the Arabic 

number input modules and earlier than the phonological production stages, i.e., the deficit is in 

the process of converting the digits to number words (this pathway is marked in Fig. 9.1 with 

⊗). Furthermore, the deficit is syntactic as it affects only two-digit numbers (and longer numbers 

too, although they were not systematically explored in this study) whereas single digits are 

spared. 

At this point we know that ZN’s deficit is in a syntactic module in the process that converts 

multi-digit Arabic numerals into number words. We can think of this process as involving two 

stages – a “core” stage that converts numbers from a sequence of digits to a set of abstract 

identities of number words (Cohen & Dehaene, 1991; Dotan & Friedmann, 2015; McCloskey 

et al., 1986, 1990; Sokol & Mccloskey, 1988), and a subsequent stage that transfers this 

information to the morpho-phonological production modules. Because his number repetition 

indicates that the source of his number deficit is not the phonological output itself, we can 

conclude that the latest possible locus of deficit is in the module that sends the output of the 

conversion process, namely, the abstract identities of number words, to the phonological 

modules of lexical retrieval. In terms of the number reading model described in Chapter 7, ZN’s 

deficit may be in any of the verbal-structural processes that result in the number word frame 

(Fig. 7.2). 

Although ZN’s deficit is in number syntax, our findings rule out the extreme possibility that 

he has lost all syntactic abilities: in both number reading tasks (as numbers and as single digits) 

he never said the unit digit before the decade digit. Thus, the relative order of the two digits, 

which is one kind of syntactic information, was spared. ZN’s good dictation of two-digit 

numbers showed that his verbal-to-digit syntactic processing was also spared. As the next 

section will show, these were not the only kind of spared syntactic abilities. 

9.4. Assessment of number comprehension 

We have now reached the main question of this study: we saw that ZN cannot convert two-

digit Arabic numbers to the phonological form of number words. Can he still understand two-

digit numbers? 

We were interested in two general questions about his comprehension of numbers – can he 

understand two-digit numbers, and what is the nature of the processes he uses to understand 

numbers. More specifically, the first question we will ask is whether he can apply the process 

that converts the relative positions of the digits into their abstract decimal roles as decades and 
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units. This question was assessed using a two-digit addition task and a number comparison task 

(see the left column in Fig. 9.1). 

The second question relates to the way he processes the quantity corresponding with two-

digit numbers. Two-digit numbers can be encoded as decomposed decade and unit quantities 

(Meyerhoff et al., 2012; Moeller, Klein, Nuerk, & Willmes, 2013; Moeller, Nuerk, et al., 2009; 

Nuerk & Willmes, 2005) but they can also be encoded by combining the tens and units values 

into an appropriate overall holistic quantity (Brysbaert, 1995; Dehaene et al., 1990; Reynvoet 

& Brysbaert, 1999). Does ZN encode a two-digit number as a holistic quantity? Such a holistic 

encoding would unequivocally show that he not only managed to categorize the two digits into 

their two decimal roles and understand the quantity represented by each digit, but he was also 

able to reach a combined quantity by evaluating the two digits in correct proportions. This 

second question was assessed using the number comparison task and an Arabic number-to-

position mapping task. 

9.4.1. Two-digit addition 

The two-digit addition task examined ZN’s ability to assign the two digits into their decimal 

roles as decades and units, and apply the procedures required to add them. He was presented 

with written exercises in which he added single-digit numbers to other single-digit numbers or 

to two-digit numbers. The exercises were always presented using Arabic numbers and ZN 

answered in writing. He was shown three single-digit additions (X+Y) with a single-digit result, 

four round-number additions (X0+Y or X00+Y), and eight two-digit additions (XY+Z), five of 

which required carry procedure. His performance was flawless. 

This performance with written answers is markedly different from his performance when he 

was required to give oral responses to two-digit additions. He could not answer orally any of 

the 3 two-digit addition exercises presented to him (XY+Z), and responded by saying only the 

(correct) unit digit of the result. He performed flawlessly, however, with single digit additions 

(X+Y; 3/3 correct), and had only one error in 4 round-number additions. 

Thus, in spite of his deficit in verbal production of multi-digit numbers, ZN can still perform 

two-digit addition, even when a carry procedure is required, as long as he is not required to 

produce the result orally. 
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9.4.2. Two-digit comparison 

A common task to examine holistic processing of numbers is two-digit comparison. In the 

task that we used, ZN was asked to decide in each trial whether the two-digit number presented 

on screen is smaller or larger than 55 (“the standard”). Number comparison tasks involve 

comparison of magnitudes, and reaction times decrease when the target-standard distance 

increases (Dehaene et al., 1990; Hinrichs & Novick, 1982; Moyer & Landauer, 1967; Nuerk & 

Willmes, 2005). In the present task, if the participant uses two-digit holistic quantity, we should 

observe a continuous distance effect (Dehaene et al., 1990). 

9.4.2.1. Method 

A two-digit number was presented on screen in each trial. ZN was asked to compare each 

number as quickly as possible to a fixed reference number of 55; he pressed the “Z” key with 

his left hand to respond “smaller than 55”, or the “.” key with his right hand to respond “larger 

than 55”. Each of the numbers from 31 to 79, except 55, was shown 4 times. The 192 trials were 

presented in random order. The experiment was implemented using PsychToolbox with Matlab 

R2012a on a Macbook Pro laptop with a 13” monitor. The numbers were presented in the center 

of the screen in black font on gray background. The digits were 2 cm high. 

9.4.2.2. Results 

ZN had 2.6% errors in this task (5 errors), and these trials were excluded from the analyses. 

His RT was 877 ± 273 ms, with no significant difference between hands (right: 909 ± 346 ms; 

left: 844 ± 161 ms, t(185) = 1.66, two-tailed p = .10)11. 

To analyze the effect of target-standard distance, the trials were grouped into 3 groups by 

their distance from 55 (distances of 1-8, 9-16, or 17-23). The RT was submitted to ANOVA 

with the distance group and response type (smaller/larger than 55) as factors. Both factors had 

a significant main effect (distance group: F(2,181) = 4.2, two-tailed p = .02; response type: 

F(1,181) = 2.76, one-tailed p = .05) and there was no interaction (F(2,181) = 1.11, p = .33). The 

mean RTs of the three distance groups were 954, 865, and 814 ms respectively, and the linear 

contrast was significant (F(1,181) = 8.18, p = .005), which confirms the predicted distance 

effect. 

                                                 
11 The variance in right-hand responses was larger than in the left hand (F(90,95) = 4.64, p < .0001), perhaps as 

a result of the left-hemisphere brain damage. 
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The RTs were then submitted to a regression analysis. 14 outlier trials were removed (a trial 

was defined as an outlier with respect to the four trials of the same target number, if removing 

this trial decreased the standard deviation to 33% or less). The predictors were log(absolute 

distance between target and standard), the response type (1 or -1), and the product of these two 

(to assess interaction). Only log(distance) had a significant effect (p = .001), confirming again 

the distance effect. The two other predictors were not significant (p > .23). 

To study the contribution of the unit digit to the distance effect, we used two regression 

analyses introduced by Dehaene et al. (1990). In the first analysis, the predictors were LogDiz, 

which represents the decade distance, and Dunit, which assesses the unit digit contribution12. 

Both predictors were significant (p < .04), which shows that both digits affected the comparison. 

The second analysis was run only on trials outside the standard’s decade. The predictors were 

log(absolute distance between target and standard), response type, their product, and Dunit. 

Only log(distance) had significant contribution (p < .02, and p ≥ .13 for the other predictors), 

showing that the holistic distance is a sufficient predictor of the distance effect, and that the 

decomposed unit makes no additional observable contribution to the RT. 

9.4.2.3. Discussion of the two-digit comparison task 

ZN’s high accuracy on this task clearly indicates that he was able to understand two-digit 

numbers and assign the digits to their appropriate decimal roles as decades and units. 

Furthermore, his performance is in accord with the assumption that he used holistic encoding of 

the two-digit quantities, as we observed a target-standard distance effect that extended beyond 

the standard’s decade, with no additional contribution of the unit digit. 

9.4.3. Number-to-position 

The number-to-position task, discussed at length in the first section of this dissertation, is 

another common paradigm to investigate quantity representation. ZN performed our iPad-based 

version of this task, so we could tap his two-digit quantity representation in detail. 

9.4.3.1. Method 

The number-to-position task was administered as described in Section 2.2. Each target 

number between 0 and 40 was presented four times, all in random order.  
                                                 

12 Let Ds, Us, Dt, and Ut be respectively the decades and units digits of the standard and the target (Ds = Us = 5). 
LogDiz is the logarithm of 1 + |Dt - Ds|. Dunit equals zero for targets within the standard's decade (i.e., when Dt = 
Ds). Outside the standard's decade, Dunit equals Ut - 4.5 for targets smaller than the standard and 4.5 - Ut for targets 
larger than the standard. 
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ZN’s results were compared with a control group of 15 right-handed individuals matched 

for age (70;7 ± 4;2, from 66;6 to 79;7), language (native Hebrew speakers), education (BA or 

MA degree), and occupation (they all worked, like ZN, in number-oriented jobs: 9 engineers, 3 

math teachers in high or junior high schools, 2 economists, and one accountant). 

9.4.3.2. Results 

ZN’s movement time was 1320 ± 220 ms from target onset to reaching the number line, 

which is very similar to the control participants (1290 ± 210 ms, Crawford & Garthwaite’s 

(2002) and Crawford & Howell’s (1998) t(14) = .14, one-tailed p = .45). Fig. 9.2a shows ZN’s 

finger trajectories (for each target number, a median trajectory was calculated by re-sampling 

the raw trajectories into equally time points and finding the median coordinate per time point). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 9.2. Number-to-position task results. (a) ZN’s median trajectories per target. (b-c) The b values of 

the regressions that capture the results of the number-to-position task. Each group of 3 vertically-

aligned points represents a single regression of a specific post-stimulus-onset time (t = 0 is the stimulus 

onset). Significant b values (p ≤ .05) are represented by black markers. 

The quantity representation in this task can be investigated by finding which factors govern 

the finger’s horizontal movement. This was done using a regression analysis. The dependent 

variable was the trajectory endpoints (the positions marked by ZN on the number line), and there 

were three predictors. The first two predictors account for the linear quantity representation: the 

target number’s decade (0, 10, 20, 30, or 40) and the unit digit. The two digits were entered as 

ZN’s median trajectories Regression results: ZN 

Regression results: Control participants 

a b 

c 
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separate predictors to account for the possibility that the contributions of the decomposed decade 

and unit quantities deviate from a 1:10 ratio. The third predictor was log(target+1), linearly 

rescaled to the 0-40 range. This predictor taps holistic-logarithmic representation of quantity. 

The regression showed significant contribution of the all three predictors (p < .001)13. 

A similar regression analysis was performed to assess how ZN’s quantity representation 

evolves throughout a trial (from stimulus onset until he touches the number line). One regression 

was run per post-stimulus-onset time point, in 50 ms intervals. The same three predictors were 

used (decade, unit, log) and the dependent variable was the implied endpoint – the position on 

the number line that the finger would hit if it keeps moving in its current direction θt. This θt 

was defined as the direction vector between the finger x,y coordinates at times t - 50 ms and t. 

The implied endpoint was also cropped to the range [-2, 42] and was undefined when the finger 

moved sideways (|θ| > 80°). The regression was also run for each of the control participants, and 

the significance of each b value in the control group (per predictor and time point) was assessed 

by comparing the group's b values with 0 using t-test. One-tailed p values were used for 

average(b) > 0, and two-tailed p values for average(b) < 0. 

This sequence of regressions (Fig. 9.2b) showed that ZN had significant contributions of the 

decade predictor from 700 ms post-stimulus-onset and in all subsequent time points, of the units 

from 850 ms, and of the log from 650 ms. The control group (Fig. 9.2c) showed an earlier effect 

of the decades (from 500 ms) and units (from 550 ms) digits and no significant group-level log 

effect. We now turn to a detailed analysis and comparison of these effects. 

9.4.3.2.1. ZN encodes holistic two-digit quantities 

The existence of a significant logarithmic factor clearly shows that ZN represented a holistic 

quantity that integrated the decade and unit values of the target number. This is because the 

logarithmic function cannot be represented as a linear combination of the decade and unit 

quantities, so a logarithmic factor in the regression necessarily reflects a log or log-like function 

of the whole quantity. Importantly, there was a time window of 100 ms, starting in 650 ms, in 

which the log predictor was significant but the linear predictors (decade and unit) were not yet 

                                                 
13 In our experiments with healthy participants, the regression analyses discovered a fourth significant predictor 
that reflects a spatial aiming strategy in the late trajectory parts (“the spatial reference points” effect, 
Section 2.3.2.6). However, in ZN’s data this predictor had no significant effect on the trajectory endpoints  
(b < .001, p > .93), nor was it significant in the trajectory analysis described in the next paragraph (p > .12 in all 
time points). Thus, we did not use this predictor here. 
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significant. This indicates that the holistic-logarithmic quantity representation preceded the 

linear representation. 

We compared ZN’s performance pattern with the group of healthy control participants using 

the three-predictor regression model described above. ZN’s b value of the log predictor was 

higher than the control group in 250 ms and in all subsequent time points, and this difference 

was marginally significant in 1250 ms and in the subsequent time points (Crawford & 

Garthwaite’s (2002) t ≥ 1.83, two-tailed p ≤ .1). A per-participant analysis showed that 4 control 

participants had a significant log effect in 2 or more time points. ZN’s log effect remained quite 

stable throughout the trajectory and was observable even in the endpoints. This pattern is 

different from the control participants, for whom the non-significant logarithmic trend was 

clearly transient (see Fig. 9.2c)14. 

We examined and excluded an alternative explanation according to which ZN employed a 

decomposed quantity representation of each of the digits using a logarithmic quantity scale. 

According to such an alternative explanation, the log factor in Fig. 9.2b is an artifact of the 

correlation between the log(target+1) predictor, which we used in the regression, and the factors 

that allegedly governed ZN’s hand movement: some linear combination of log(decade) and 

log(unit-digit). To rule out this possibility, another regression analysis was run: the dependent 

variable was still the implied endpoint, but the logarithms of the decade and unit were added as 

two new predictors on top of the decade digit, the unit digit, and log(target+1). One such 

regression was run per post-stimulus-onset time point, in 50 ms intervals. The results showed 

significant contributions of log(target+1) in 800 ms and in all time points from 900 ms (p < .05). 

Importantly, there was no time point in which any of the single-digit logarithms made a 

significant contribution. In fact, their regression b values were negative in 900 ms and in all 

subsequent time points.  

Another alternative explanation that we ruled out was the possibility that the log effect 

results from faster encoding of smaller quantities. Faster processing of small-target trials would 

make their initial finger trajectories farther apart from each other than the trajectories of larger 

target numbers. To neutralize this differential quantity encoding speed, we aligned trajectories 

                                                 
14 ZN’s log effect was also compared with the 21 younger participants reported in Chapter 2. This comparison too 
showed that ZN’s performance pattern was no less logarithmic than the control group’s – in fact, his b[log] was 
larger than the b[log] of this control group in 600 ms and in all subsequent time points, and this difference was 
significant from 850 ms and onwards (Crawford & Howell's (1998) t ≥ 2.28, two-tailed p ≤ .04; and from 1000 ms, 
t ≥ 4.05, p < .001). The log effect of the younger control participants was also transient, like the older control group 
(and unlike ZN). 
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by the time point of the first significant horizontal finger movement (calculated as described in 

Section 3.2.2.4.1) and re-ran the decade-unit-log regression on the aligned trajectories. Even in 

these regressions, which neutralize possible differences in velocity onset per trial (and per 

target), ZN still showed a logarithmic effect (b[log] > .12, one-tailed p < .05, in all time points 

from 700 ms post-velocity-onset, and p < .07 from 500 ms), thereby refuting the differential 

velocity onset as an alternative explanation. 

The results show unequivocally that ZN used holistic encoding of two-digit quantities, and 

that this holistic encoding was not impaired in comparison to the control group.  

9.4.3.2.2. Decomposed linear quantity encoding 

Fig. 9.2b shows that ZN’s effect of the unit digit seems slightly delayed with respect to the 

decade digit. This difference was statistically assessed by modifying the predictors in the above 

per time point regression analysis into log(target+1), the target number N0-40, and the unit digit 

U. In this new set of regressions, the predictor U captures situations in which the relative 

contributions of the decade and unit digits deviate from a strict 1:10 ratio. Such deviation was 

indeed found: the unit digit predictor’s b value (b[U]) was smaller than zero in all time points, 

and this difference was significant in a certain time window (two-tailed p < .05 in 800 and 900 

ms; and p < .1 from 650 ms to 950 ms except in 750 ms). These results suggest that ZN was 

processing the decade and unit digits in decomposed and possibly serial manner. 

ZN’s delayed processing of the unit digit was not statistically different from the control 

group: comparing his b[U] in the log+target+unit regression with the control participants 

showed no significant difference in any time point (even when assuming that his b[U] should 

be smaller than the controls’ and consequently using one-tail p values, only a marginally 

significant difference was found in only 3 time points – 800, 900, and 950 ms – Crawford & 

Garthwaite’s (2002) t ≤ -1.49, p < .1). A per-participant analysis of the control group showed 

that three participants also showed a significant b[U] < 0 in two or more time points. Thus, even 

if ZN’s processing of the decade and unit digits appeared slightly more sequential than the 

control group’s, this difference was very small. 

9.4.3.2.3. Accuracy 

ZN’s endpoint error – the absolute difference between the judged endpoint and the correct 

target position – was 3.13 ± 2.43 (using the 0-40 scale). This is less accurate than the control 

participants, whose mean endpoint error was 1.94 ± .53 (Crawford & Garthwaite’s (2002)  
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t(14) = 2.17, p = .02). ZN’s endpoint errors were not correlated with the target number (r = -.05, 

p = .53), nor was there another, non-linear dependency between the target number and the 

endpoint error (one-way ANOVA, F(40,123) = 1.33, p = .12). 

9.4.3.3. Discussion of the number-to-position task 

ZN’s performance in this task showed that he encoded two-digit quantities holistically. 

There was no evidence to suggest that the holistic encoding was impaired with respect to healthy 

participants – in fact, the holistic-logarithmic trend in ZN’s result was even slightly higher than 

in the control group. Given ZN's severe syntactic deficit in converting two-digit numbers from 

digit to verbal representation, we can reach the most important conclusion in this study: 

constructing the holistic quantity was performed successfully, independently of the impairment 

in digit-to-verbal conversion. Furthermore, an analysis of the linear factors in this task suggests 

that ZN’s ability to process the decade and unit digits in parallel was comparable with that of 

the control participants, or only slightly worse. 

9.5. Discussion of chapter 9 

This study presented the case of ZN, an aphasic patient who has a selective syntactic deficit 

in converting two-digit numbers from digit representation to verbal-phonological 

representation. ZN can read aloud single digits but he has great difficulty in reading aloud two-

digit Arabic numbers using a valid decade+unit syntactic structure. A detailed 

neuropsychological examination showed that ZN’s deficit is neither in the Arabic input nor in 

the phonological output modules, because he could copy multi-digit numbers, write them to 

dictation, and repeat them. His syntactic deficit therefore lies in the central process that converts 

the digits into a structured sequence of abstract identities of number words (the number word 

frame, Cohen & Dehaene, 1991; Chapter 7), or in a subsequent stage that uses these abstract 

identities to access the phonological production modules. This deficit is not a global deficit in 

processing number syntax: ZN has intact syntactic processing in the opposite pathway – verbal 

to digit representation – as demonstrated by his good performance in number dictation. This 

dissociation between digit-to-verbal and verbal-to-digit syntax is in line with previous studies 

(Cipolotti, 1995). 

In spite of his deficit in digit to verbal number conversion, ZN showed spared number 

comprehension and spared number syntax abilities in several ways. First, he is able to add two-

digit numbers with single-digit numbers, even when the addition exercise requires carry 
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operation, as long as verbal output is not required. This shows that he understands the base-10 

system, can assign the digits to their decimal roles as decades and units, and can carry out the 

addition procedure. This finding extends previous studies showing that multi-digit addition does 

not depend on phonological (Klessinger et al., 2012; Varley et al., 2005) and orthographic 

(Varley et al., 2005) representations of verbal numbers: whereas those studies showed that 

addition does not depend on phonological encoding of the numbers, we showed that addition 

does not depend even on an earlier stage – a syntactic module involved in digit-to-verbal 

transcoding. In this sense our conclusions resemble Brysbaert et al.'s (1998), who showed that 

addition is unaffected by the syntactic structure of verbal numbers in a certain language. 

However, whereas Brysbaert et al.’s conclusion rested on a null effect of language in nonverbal 

calculation, we managed to show a strict dissociation between spared addition and impaired 

syntactic processing. 

Crucially, ZN’s spared comprehension and syntax was also shown by his ability to encode 

two-digit numbers as holistic quantities. This was demonstrated by the finding of a continuous 

two-digit distance effect in the two-digit number comparison task, and by the finding of a 

logarithmic factor in the two-digit number-to-position mapping task. His good performance in 

these tasks also demonstrated his ability to assign digits to decimal roles. Fig. 9.3 illustrates 

these conclusions. 

These findings lead to interesting conclusions regarding the specificity of the modules that 

process number syntax. Multi-digit Arabic numbers require syntactic processing when 

converted to verbal number words, when converted to quantities, and when manipulated in 

addition exercises. Our results unequivocally show that certain syntactic functions – assigning 

digits to their decimal roles and converting two-digit Arabic numbers to holistic quantities – are 

dissociable from at least some of the syntactic processes involved in digit-to-verbal transcoding, 

because these syntactic functions can be successfully performed even when one of the syntactic 

digit-to-verbal transcoding processes is impaired.  

These results are in line with several previous studies that dissociated between Arabic 

number comprehension and Arabic-to-verbal transcoding. Several previous patients showed 

impairments of digit-to-word conversion with spared number comprehension (Cohen & 

Dehaene, 1995, 2000; Cohen et al., 1994). Other studies specifically reported patients with a 

syntactic deficit in digit-to-word conversion (Cipolotti, 1995, patient SF; Cipolotti & 

Butterworth, 1995, patient SAM) who could perform certain number comprehension tasks – 
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number comparison (both patients), multi-digit comparison (SF), and two-digit addition (SAM). 

The syntactic deficit of SAM and SF still allowed them to assign digits to decimal roles. The 

present findings replicate and extend these results, particularly using the number-to-line task to 

demonstrate a fine-grained preservation of the encoding of two-digit numbers as holistic 

quantities in patient ZN. 

 
Fig. 9.3. In spite of ZN’s syntactic deficit in converting numbers in Arabic notation to a verbal 

representation, he can assign the digits to their decimal roles, encode two-digit holistic quantities, and 

perform two-digit additions. 

Taken together, such neuropsychological cases indicate that the syntactic processes involved 

in converting digits to words and digits to quantities are at least partially separate, and that 

several aspects of two-digit number comprehension can be achieved without transcoding the 

number to its verbal representation. This conclusion fits with several other findings that 

dissociated language syntax from several aspects of syntax-dependent mathematical processing 

(Brysbaert et al., 1998; Maruyama et al., 2012; Monti et al., 2012; Varley et al., 2005). Taken 

together, this body of evidence weakens the hypothesis that a single global mechanism underlies 

all kinds of syntactic processes (Hauser et al., 2002; Houdé & Tzourio-Mazoyer, 2003) and 

promotes a view of several, distributed syntactic processes. 
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10.Reducing interference improves the memorization of 

calculation facts° 

Abstract. Hypersensitivity to interference (HSTI) is a situation where a person is extremely sensitive to 

verbal interference when trying to memorize verbal information. Individuals with HSTI have difficulty 

in memorizing verbal items that are similar to each other. This may result in induced dyscalculia: HSTI 

was shown to be correlated with a difficulty in learning the multiplication table, presumably because 

the multiplication table, which is typically memorized verbally, has much similarity between the items 

("three times four", "three times five", etc.). Here, we show causal evidence that HSTI disrupts the 

memorization of multiplication facts. We examined DL, a woman with HSTI who had a severe difficulty 

in memorizing multiplication facts. To examine whether her multiplication difficulty results from 

interference, we tested whether she could learn multiplication facts when interference was reduced. 

In a series of merely 12 short sessions over a period of 4 weeks, DL rehearsed 16 multiplication facts – 

four facts per week. When the 4 facts in a given week were similar to each other, DL’s learning was 

poor. Conversely, when the 4 facts in a given week were dissimilar from each other, DL learned them 

quickly and easily. The effect of similarity was observed at the end of the 4-week training period, and 

persisted after two months during which DL received no additional training. These results provide the 

first causal evidence that hypersensitivity to interference impairs the learning of arithmetic facts. From 

a clinical perspective, the success of our training method may call for a change in the way multiplication 

facts are taught in elementary school. 

10.1. Introduction 

Why is it so hard for some people to learn the multiplication table – single-digit 

multiplications up to 10*10? In his book The Number Sense, Stanislas Dehaene aimed to clarify 

the difficulty of learning multiplication and addition facts by inviting the reader to the following 

mental exercise: 

Arithmetic facts are not arbitrary or independent of each other. On the contrary, they are 

closely intertwined and teeming with false regularities, misleading rhymes, and confusing 

puns. What would happen if you had to memorize an address book that looked like this: 

[… ] 

Charlie David works on Albert Bruno Avenue 

Charlie George works on Bruno Albert Avenue 

George Ernie works on Charlie Ernie Avenue 

                                                 
° This chapter has supplementary material in Appendix C. 
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Learning these twisted lists would certainly be a nightmare. Yet they are nothing but 

multiplication table in disguise. They were composed by replacing each of the digits 1, 2, 

3, 4, 5, 7 … by a surname – Albert, Bruno, Charlie, David, Ernie, George [… ]. No wonder 

we have trouble remembering them: the most amazing thing may well be that we do 

eventually manage to memorize most of them! (Dehaene, 1997, p. 127). 

 

Dehaene is suggesting that memorizing the multiplication table is as difficult as memorizing 

a list of arbitrary, highly similar verbal items. The analogy he draws between multiplication 

facts and verbal facts (names and addresses) is not coincidental: according to his triple-code 

model of number processing (Dehaene, 1992; Dehaene & Cohen, 1995), multiplication facts are 

stored using verbal representation. This view was supported by many behavioral and brain 

imaging studies (for a review, see Dehaene et al., 2003): neuropsychological studies showed 

that multiplication deficits were associated with verbal impairments (as opposed to subtraction 

deficits, which were associated with impaired quantity processing; Cohen & Dehaene, 2000; 

Cohen, Dehaene, Chochon, Lehéricy, & Naccache, 2000; Dagenbach & McCloskey, 1992; 

Dehaene & Cohen, 1997; Delazer & Benke, 1997; Lampl, Eshel, Gilad, & Sarova-Pinhas, 1994; 

Lochy, Domahs, Bartha, & Delazer, 2004; Pesenti, Seron, & van der Linden, 1994; van 

Harskamp & Cipolotti, 2001). Furthermore, several brain imaging studies showed dissociations 

between multiplication and subtraction (Chochon, Cohen, van de Moortele, & Dehaene, 1999; 

Cohen et al., 2000; Lee, 2000), and multiplication activated brain areas that are also activated 

by tasks of language, verbal short-term memory, and phonological processing (Dehaene et al., 

1999; Simon, Mangin, Cohen, Le Bihan, & Dehaene, 2002). 

Several studies showed that similar verbal items may interfere with one another in memory 

tasks (Hall, 1971; Nelson, Brooks, & Borden, 1974; Oberauer & Kliegl, 2006; Oberauer & 

Lange, 2008). Multiplication facts, which are stored verbally, may therefore be subject to this 

verbal interference, because they are highly similar to each other. Note that low capacity of 

verbal memory is not sufficient by itself to explain all multiplication difficulties, because there 

is double dissociation between low memory capacity and impaired knowledge of arithmetic 

facts (Butterworth, Cipolotti, & Warrington, 1996; Kaufmann, 2002). Interference may be the 

specific factor that could explain impaired knowledge of arithmetic facts even when memory 

capacity is unimpaired. In particular, interference might be the reason for operand errors – 

responding to a multiplication exercise with the result of another multiplication exercise, e.g., 
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4x5=24 (Ashcraft, 1992; Campbell, 1987; Campbell & Graham, 1985; De Visscher & Noël, 

2014b; Kaufmann, 2002; Kaufmann, Lochy, Drexler, & Semenza, 2004; Lemaire & Siegler, 

1995; Sokol, McCloskey, Cohen, & Aliminosa, 1991; Stazyk, Ashcraft, & Hamann, 1982; 

Thibodeau, Lefevre, & Bisanz, 1996). 

All of us may sometimes suffer memorization difficulties arising from verbal interference, 

but for some the difficulty is more severe than for others. De Visscher and Noël (2013, 2014a, 

2014b) suggested that some people have hyper-sensitivity to interference – an extreme 

sensitivity to interference from similar verbal items – and that such individuals may show worse-

than-normal knowledge of multiplication facts. In support of their hypothesis, they reported DB, 

a woman with very poor memory of the multiplication table, and showed that she also had 

hypersensitivity to interference: she performed poorly in tasks that were sensitive to 

interference, even when they involved only non-number words. In contrast, she performed 

normally in tasks that assessed several other potential sources of difficulty in calculation, 

including verbal working memory capacity. De Visscher and Noël suggested that DB’s 

difficulty in memorizing the multiplication table was a reflection of a more general verbal 

difficulty – her hyper-sensitivity to interference. 

De Visscher and Noël’s series of studies is very convincing, yet they only showed 

correlational relation between hypersensitivity to interference and difficulty in arithmetic facts. 

In the present study, we wished to strengthen their point by providing casual evidence to the 

claim that hypersensitivity to interference disrupts the memorization of multiplication facts. To 

this end, we examined DL – a woman that, similarly DB – had poor memory of multiplication 

facts and hypersensitivity to interference. To show that hypersensitivity to interference not only 

correlates with DL’s difficulty in multiplication facts but is also the reason for this difficulty, 

we designed an experiment to demonstrate that once interference was taken out of the game, DL 

would be able to memorize multiplication facts. 

The specific idea was as follows. First, we reasoned that even if hypersensitivity to 

interference impairs DL’s ability to memorize similar verbal items, she would still be able to 

memorize dissimilar verbal items. This assumption is well supported by the studies of De 

Visscher and Noël (2013, 2014a, 2014b). We capitalized on the fact that although the 

multiplication table as a whole has much similarity between the facts, some facts are dissimilar 

from each other (e.g., 9*9=63 and 7*4=28). Thus, DL may still be able to learn a subset of the 

multiplication table that consists of dissimilar facts. Second, we assumed that the interfering 
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effect of fact A on a similar fact B depends on A and B being presented within reasonable time 

from each other. If A and B are learned with sufficient temporal delay between them, they would 

not interfere with each other. Thus, even if we teach DL the full multiplication table, she might 

still be able to learn the subset of dissimilar facts if this subset is taught in a time period during 

which no other multiplication facts are presented. 

These two foundations led to the following simple training method. We identified the 

multiplication facts that DL did not know, and grouped them into small sets of facts. Crucially, 

different sets of facts had different levels of between-item similarity within the set, i.e., different 

levels of induced interference. Each set was taught for one week. Importantly, in the week when 

DL was learning a certain set of facts, she refrained from rehearsing facts from any of the other 

sets, in order to avoid interference from out-of-set facts. We predicted that DL would have 

difficulty in learning the multiplication facts in high-similarity sets, but would succeed learning 

the low-similarity sets. 

Our goal in this study was not only theoretical but also clinical. A success of our experiment 

would suggest a simple scheme to teach the multiplication table to individuals with 

hypersensitivity to interference. For our training scheme to be valid clinically, we should show 

not only that item similarity has the predicted effect on learning, but also that this effect persists 

over time. To this end, DL’s knowledge of the multiplication facts was tested not only at the 

end of the training period, but also after a period of two months during which she received no 

additional training. 

10.2. Case description 

DL was a 40-year-old woman who arrived in our lab to assess of her difficulties in math. 

Initial examination indicated that her main difficulty was a severely impaired knowledge of the 

multiplication table. Put in her own words, she was "clueless in multiplication". She reported 

that her difficulties began in elementary school, and persisted in spite of hard work and private 

tutoring in math during several years. When she finished school after 11 years, her math grades 

were very low. 

Language abilities. DL was assessed in a series of reading tasks (TILTAN, Friedmann & 

Gvion, 2003). She was flawless in reading of single words and nonwords, and had a single error 

in reading 30 word pairs (372 adult control participants had an average of 1.52 errors). This 

shows she had good reading and good lexical retrieval. Her lexical retrieval was further assessed 
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in a picture naming task , where she had only 3 errors in 100 pictures – same as the average of 

a control group of 102 adults aged 20-50 (SHEMESH, Biran & Friedmann, 2004).  

10.3. Assessment of DL's difficulties 

10.3.1. Knowledge of multiplication facts 

In a screening test, DL was presented with 12 multiplication facts – four rule-based facts 

(N*0 and N*1) and eight other facts (both operands ≥ 2). She had 2/4 errors in the rule-based 

facts, 2/8 errors in the non-rule facts, and our subjective impression was that the task was 

extremely difficult for her, even on trials in which she gave the correct answer. Notably, she 

erred even in the rule-based facts. At this time, we taught her the rules N x 0 = 0 and N x 1 = N, 

and in all subsequent testing she never erred again in these rule-based multiplication facts. 

We then tested her knowledge of all 55 multiplication facts (the larger operand always 

appeared first) – 19 rule-based facts and 36 non-rule facts15. She was flawless in the rule-based 

facts, but she had 14/36 errors (39%) in the non-rule facts: 5 operator errors (adding instead of 

multiplying), 2 within-table errors (saying the result of another multiplication fact), 1 out-of-

table error (saying a number that is not the product of any two digits), and 7 “don’t know” 

responses. This was significantly worse than the performance of 10 age-matched control 

participants (mean age = 39;4, SD = 3;0), who had 0-4 errors each (mean = 1.5 errors,  

SD = 1.58; comparing DL with the worst-performing control participant, χ2 = 7.4, one-tailed  

p = .003). Thus, DL clearly had impaired knowledge of the multiplication table. We next 

examined potential origins for this impairment. 

10.3.2. Other aspects of calculation 

DL was presented with 15 single-digit addition exercises and was asked to say the result 

verbally. She performed flawlessly, although she hesitated in some exercises. She was also 

flawless in 8 subtraction exercises in which the first operand was 0-20 and the second operand 

and the result were 0-10. 

We then presented DL with 9 two-digit calculation exercises (three additions, three 

subtractions, three multiplications). She easily applied correct calculation procedures and solved 

all the exercises (except one case, in which she used the correct procedure but was not sure 

about the result of a single-digit subtraction fact).  

                                                 
15 This test is in fact the first pretest session defined in Section 10.4.1.1. 
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Thus, DL did not have a general difficulty in all aspects of calculation – her difficulty was 

restricted to arithmetic facts, and especially multiplication facts. 

10.3.3. Verbal memory 

As reviewed in the Introduction, multiplication facts are stored verbally, so we examined 

whether DL's difficulty in multiplication facts results from a verbal memory deficit: low 

capacity of verbal-phonological short-term memory, or a difficulty in storing verbal information 

in long-term memory or retrieving it.  

 
Table 10.1. DL's performance in tasks that assess possible origins of her difficulty in multiplication facts. 

She showed good performance tasks sensitive to phonological working memory, and in symbolic 

number processing. 

Task 
No. of  
items DL 

Control participants 
Mean (SD) DL vs. controls a 

Short-term memory span 

 Digit span  7 7.05 (1.28)  n=29 t(28) = .04, p = .49 

 Word span  6 5.57 (0.75)   n=35 DL was better 

 Nonword span  3 3.46 (0.54)   n=37 t(36) = .84, p = .20 

 Word matching span  5 6.33 (0.98)   n=12 t(11) = 1.3, p = .11 

 Digit matching span  7 7 (0)   n=10 DL was better 

Nonword production (% errors) 

 Nonword reading 30 0 4.1 (4.19)   n=372 DL was better 

 Nonword repetition 48 2.1 4.6 (3.5)   n=20 DL was better 

Symbolic number processing (% errors) 

 Number reading aloud 120 3.3 2.8 (1.3)   n=21 t(20) = .38, p = .36 

 Number repetition 120 9 4.6 (3.6)   n=20 t(19) = 1.25, p = .11 

 Number dictation 68 2.9 2.5 (2.3)   n=20 t(19) = 0.21, p = .42 

a One-tailed p values are reported. 

Low capacity of verbal-phonological short-term memory may stem from a limited 

phonological input buffer or from a limited phonological output buffer. During comprehension, 

the phonological input buffer is responsible for maintaining auditory verbal information in 

memory until it is processed. During speech production, the phonological output buffer is 

responsible for merging phonological elements into phonological sequences (words and 

sentences), and for maintaining these sequences until they are produced (Butterworth, 1989, 

1992, Dell, 1986, 1988; Franklin, Buerk, & Howard, 2002; Friedmann et al., 2013; Friedmann 
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& Gvion, 2002; Garrett, 1976, 1992; Gvion & Friedmann, 2012; Kempen & Huijbers, 1983; 

Levelt, 1989, 1992; Monsell, 1987; Nickels, 1997; Nickels, Howard, & Best, 1997; Patterson & 

Shewell, 1987; Shallice, Rumiati, & Zadini, 2000; Shallice & Warrington, 1977a).  

We used three kinds of verbal short-term memory tasks. To examine the phonological input 

buffer, we used a word-sequence and a digit-sequence matching span tasks:  DL was presented 

with pairs of sequences of words or digits, in increasing length, and judged whether the two 

sequences in each pair were identical (e.g., house-train-star; house-train-star) or differed in the 

order of items (e.g., house-train-star; house-star-train). This task requires memorizing the 

auditory input but does not stress the phonological output mechanisms, so the task specifically 

taps the phonological input processes, in particular the phonological input buffer. To examine 

the phonological output buffer, DL was asked to read aloud 40 nonwords (TILTAN, Friedmann 

& Gvion, 2003) and to repeat 48 nonwords (BLIP, Friedmann, 2003), some of which were long, 

and phonologically or morphologically complex. She was also tested in serial recall (span) tasks, 

in which she repeated sequences of digits, words, or nonwords in increasing lengths (FriGvi, 

Friedmann & Gvion, 2002; aged-matched control data was taken from there). The span tasks 

require memorizing the auditory input as well as verbal production, so they tap both the input 

buffer and the output buffer, as well as additional mechanisms (Martin & Lesch, 1996). As 

shown in Table 10.1, DL's performance in all these tasks was good, i.e., her verbal short-term 

memory was intact.  

DL also performed two memorization tasks that examined her verbal long-term memory. 

The first task required memorizing a list of arbitrary words that were presented repeatedly. The 

second required memorizing a short story. 

Memorizing a list of words (Vakil, Blachstein, & Sheinman, 1998). This task, which 

includes 10 sub-tasks, examined DL's ability to memorize words in a context-free manner. The 

task started as a free recall task: the experimenter read aloud a list of 15 nouns, and DL recalled 

as many words as she could, in any order. The same list was repeated 5 times, with a recall 

attempt after each time. DL's performance was within or above norm in all 5 sub-tasks (z scores: 

.57, 1.03, .25, 1.44, -.05). A new list of 15 words was then read aloud to DL, and she recalled 

this list and then the first list again. These two sub-tasks are aimed to examine verbal-semantic 

interference between the two word lists, and DL performed well in both (z scores: -.68, .56). 

She then recalled list #1 again after a 20-minute retention interval during which other, non-

verbal tasks were administered. Again she performed well (z score = 1.42), thereby showing 
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that she managed to store the words in long-term memory and retrieve them. She was then asked 

to recognize words of list #1 from a longer list of 50 nouns (the original list and 35 distracters – 

semantic, phonological, and words from list #2). She was flawless. Finally, she was shown the 

15 words of list #1 in random order and was asked to sort them. Again, she performed well (z = 

.93). Overall, DL's good performance in all sub-tasks demonstrates her good verbal short-term 

and long-term memory. 

Memorizing a short story (Cohen, 1997). The experimenter read aloud two short stories 

(about 100 words each), one after another. DL repeated each story immediately after its 

presentation, and again after 30 minutes (during which other tasks were administered). Her 

performance was on the 34th-40th percentile both in immediate and delayed recall. Again, this 

result indicates well-functioning short-term and long-term verbal memory. 

Overall, DL performed well in all the verbal memory tasks. This shows that her short-term 

and long-term memory were functioning well. Thus, her difficulty in memorizing multiplication 

facts does not originate in a general memory deficit. This pattern of results resembles 

previously-reported dissociations between good memory functions and impaired knowledge of 

arithmetic facts (Butterworth et al., 1996; Kaufmann, 2002). 

10.3.4. Symbolic number processing 

To examine the possibility that DL's difficulty was related to a general deficit in symbolic 

number processing, we assessed her ability to process Arabic numbers and number words and 

to convert multi-digit numbers from one format to another. In a number reading task, she read 

aloud from paper a list of 120 multi-digit numbers (30, 38, 47, and 5 items with 3, 4, 5, or 6 

digits, respectively). The digit 0 appeared in 57 items, the digit 1 appeared in 41 items, and 38 

items included neither 0 nor 1. Her performance was compared to 21 control participants (mean 

age = 25;5, SD = 2;6). In a number repetition task, she repeated the same 120 numbers. Her 

performance was compared to 20 control participants (mean age = 26;1, SD = 4;8). Finally, a 

number dictation task required writing on paper 58 numbers, 3-5 digit long, that were read by 

the experimenter. The digit 0 appeared in 27 of the numbers. DL’s performance was compared 

to 20 control participants (mean age = 34;7, SD = 9;5). In all tasks, we excluded control 

participants with outlier error rates (higher than the 75th percentile by more than 150% the inter-

quartile range). 
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DL’s performance in all the above tasks was good (Table 10.1). Thus, her difficulty in 

memorizing the multiplication facts did not originate in impaired processing of symbolic 

numbers. 

10.3.5. Sensitivity to interference 

We next examined whether DL had hypersensitivity to interference, which may have 

disrupted the acquisition or retrieval of multiplication facts. The task that examined sensitivity 

to interference was a "first name – surname – country" memorization task (adapted to Hebrew 

from De Visscher & Noël, 2013). The task resembles the mental exercise described by Dehaene 

(1997), cited in the beginning of this chapter, in the sense that it required memorizing a list of 

verbal, non-numeric facts. To specifically tap sensitivity to interference, DL was required to 

memorize two lists of items: one list with high between-item similarity, and another list with 

low between-item similarity. If she has hypersensitivity to interference, she should succeed 

memorizing the low-similarity list but not the high-similarity list. This was exactly the pattern 

of results exhibited by the person described in De Visscher and Noël (2013), and as we shall 

now see – also by DL. 

10.3.5.1. Method 

DL was asked to memorize a list of 12 fictitious person names (first name + surname) and a 

country in Africa or Asia where each of them allegedly lived. Unknown to DL, the 12 names 

were two mixed lists with 6 names in each – a low-similarity list, in which each first name and 

surname appeared only once; and a high-similarity list, in which there were only 3 first names 

and 3 surnames, each repeating twice to create the names of 6 different people. The list was 

provided for memorization in five successive and identical learning stages, at the end of which 

DL's knowledge was tested. Each learning stage was administered as follows: the experimenter 

said aloud each list item (name-surname-country) and DL repeated it. Then, the experimenter 

presented – in random order – each name+surname, and DL said where that person lived. If she 

made an error, the experimenter corrected her. The 5 learning stages were followed by a final 

test stage: DL was presented with 24 name-surname-country combinations, and judged whether 

each combination was correct or not. In this final test, each of the 12 name-surname 

combinations appeared twice: once with the correct country, and once with the country of one 

of the 5 other persons in his similarity-level group. Both during learning and during testing, 
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items were presented in semi-random order such that no two subsequent items had the same first 

name, surname, or country. 

DL's performance in this task was compared with 24 age-matched control participants (mean 

age = 40;3, SD = 5;2, range = 31;6 to 48;5) with no reported cognitive deficits and with normal 

memory spans (mean digit span = 7.17, SD = 1.19; Friedmann & Gvion, 2002). One additional 

control participant was excluded due to outlier performance (chance level) in the final test. 

10.3.5.2. Results 

DL showed a dramatic effect of similarity in this task. In the final test (Table 10.2), she 

performed almost at ceiling on the low-similarity list, having only a single error (which is not 

significantly higher than zero errors, Fisher's p = .50). This performance was even slightly better 

than the control group. Conversely, her performance was poor on high-similarity items – 

significantly worse than the control group, not significantly different from chance level  

(χ2 = .17, one-tailed p = .34), and significantly worse than her own performance in the low-

similarity items (χ2 = 3.56, one-tailed p < .03). Crucially, increasing the similarity level (low-

similarity list versus high-similarity list) disrupted DL’s performance significantly more than it 

disrupted the control group’s performance (dissociation analysis of Crawford, Garthwaite, & 

Porter, 2010: t(23) = 2.15, one-tailed p = .02). The results clearly show that DL was sensitive to 

the item similarity level significantly more than the control group. Namely, she had 

hypersensitivity to verbal interference. 

Table 10.2. The number of errors (out of 12) in the verbal memorization task (name-surname-

country). DL performed poorly in the high-similarity items, which are especially sensitive to 

interference, but she performed well in the low-similarity items. 

Similarity between items DL Control participants Mean (SD) DL vs. controls a 

Low 1 1.68 (1.44) DL was better 

High 5 2.12 (1.26) t(23) = 2.24, p = .02 

a One-tailed p values are reported. 

We note that the control group too was affected by the similarity level of items, even if this 

effect was smaller than DL’s: their performance in low-similarity items was marginally better 

than in high-similarity items (paired t(23) = 1.64, one-tailed p = .06). Furthermore, during 

intermediate learning stages, they performed better in low-similarity items than in high-

similarity items (e.g., in the last learning stage they recalled 4.21 out of 6 low-similarity items, 

SD = 1.72, but only 2.79 out of 6 high-similarity items, SD = 1.28; paired t(23) = 4.30, one-
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tailed p = .0001). These results agree with previous findings of similarity-induced interference 

in normal population (Corman & Wickens, 1968; Hall, 1971; Mark-Zigdon & Katzoff, 2015; 

Oberauer, Lewandowsky, Farrell, Jarrold, & Greaves, 2012; Oppenheim et al., 2010; Posner & 

Konick, 1966; Runquist, 1970, 1971). 

10.3.6. Summary of the assessment results 

The experiments above showed that DL’s difficulty in solving multiplication facts was not 

caused by a general memory or language impairment, nor did it originate in deficits in symbolic 

number processing. Her multiplication difficulties are best explained as hypersensitivity to 

verbal interference: she demonstrated this hypersensitivity also in a memorization task that did 

not involve numbers.  

Given this conclusion, we now turn to the main question of this study – to examine whether 

the training method we devised would indeed help DL overcoming her hypersensitivity to 

interference, and enable her to learn the multiplication table. 

10.4. Multiplication facts training 

10.4.1. Method 

The training program was structured as a pre-training test, a training period, a test at the end 

of the training period, and a follow-up test after two months. The training was done on the 16 

multiplication facts with the lowest pre-training scores. These facts were grouped into four sets 

with four facts in each. Each set of facts was trained during one week (and only during this 

week). After this 4-week training period, a post-training test evaluated DL's knowledge of all 

multiplication facts. Another test was run after 2 months, during which DL received no training. 

Throughout this 3-month period, DL was asked not to rehearse multiplication on her spare time, 

and she reported to have followed this instruction. All training and test sessions were performed 

over the telephone, while DL was in a quiet room in her home. Training and testing were done 

orally – the repetition of facts, the experimenter's questions, and DL's answers.  

Crucially, the four sets of trained multiplication facts differed from each other with respect 

to the degree of within-set interference: there was one low-interference set, one high-

interference set, and two medium-interference sets. DL was aware that the aim of our 

intervention was to teach her multiplication facts, but she was unaware of the experiment design 

details, in particular of the manipulation of interference levels. We predicted that the effectivity 

of training would be influenced by the within-set interference level, namely, that DL would 
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show worse memorization of higher-interference sets. As we shall see below, this prediction 

was confirmed, which means that at the end of the study DL knew some multiplication facts but 

not others. Thus, after completing the study (including the follow-up test), we taught DL the 

remaining facts properly, in low-interference condition, so that by the time she left our lab she 

knew the multiplication table fully. 

10.4.1.1. Testing before and after the training 

DL's knowledge of the multiplication facts was tested in 3 time points (hereby, “testing 

times”): before training, immediately after training, and two months after the training ended. 

Each testing time included 3 separate testing sessions, administered in 3 separate days of a single 

week. In each of these testing sessions, DL was asked to solve the 55 multiplication facts (larger 

operand first). Reaction times were defined as the delay between the experimenter finishing to 

ask the question and DL beginning to say the result. 

Three kinds of responses were classified as errors: (1) incorrect responses, including 

situations where DL made several response attempts, at least one of which was incorrect.  

(2) DL did not know the answer. (3) Extremely slow responses – i.e., outlier reaction times. 

Such slow responses may suggest that DL was employing a calculation strategy rather than 

retrieving the multiplication fact from memory. Outliers were defined as reaction times that 

exceeded the 75th percentile by more than 150% the inter-quartile range. Outlier calculation was 

done within each set of 36*3=108 non-rule facts of a single testing time, excluding items that 

were classified as errors by one of the two other criteria. 

Per testing time, each exercise was given a score between 0 and 3 based on the 3 testing 

sessions. The 16 facts with lowest pre-training scores were selected for training (10, 3, and 3 

facts with score = 0, 1, and 2, respectively. 

10.4.1.2. Grouping the trained facts into sets 

The 16 trained facts were grouped into four sets (four facts per set) that differed from each 

other in the level of within-set similarity. We calculated a similarity index per set, using De 

Visscher and Noël’s (2014b) method: first, the similarity between each two multiplication facts 

was defined as the number of identical digit pairs that appear anywhere in the two facts. For 

example, the facts 8*7=56 and 8*3=24 have no common digit pair (only the digit 8 appears in 

both) so their similarity index is 0. The facts 3*4=12 and 3*7=21 have three common digit pairs 

(1-2, 2-3, and 1-3) so their similarity index is 3. The similarity index of each 4-facts set was 
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calculated as the sum of the similarity indices of each of the 6 pairs of multiplication facts in the 

set (see Appendix A for comparison of this similarity index with other possible indices). 

Of the four sets of facts, one set had high similarity index (7*4=28, 7*6=42, 8*4=32, 

9*4=36, similarity = 18). The three other sets had lower similarity indices – very low similarity 

in one set (4*4=16, 8*3=24, 8*7=56, 5*3=15, similarity = 0) and moderate similarity in two 

sets (8*8=64, 9*7=63, 6*2=12, 8*6=48, similarity = 6 and 9*6=54, 6*5=30, 8*5=40, 7*5=35, 

similarity = 8). 

10.4.1.3. The training program 

Each set of four facts was trained over 3 sessions, in 3 separate days of a single week. A 

fourth session, administered after the weekend, was dedicated to testing DL's knowledge of all 

facts that she learned since the beginning of the 4-week training period. This design implies that 

on one hand, earlier sets received a bit more training in retrieval; on the other hand, on the time 

of the final test the memory of later-learned sets might have been fresher. The high-similarity 

set was scheduled for the second week of training, packed between lower-similarity sets. 

Training sessions: Each training session lasted about 5 minutes. The session started with a 

pretest, in which DL was asked to solve each of the 4 trained exercises. After the pretest, the 

experimenter corrected DL's errors. Next, three memorization-and-recall phases were done. In 

each phase, the experimenter said each multiplication fact (exercise and result, e.g., "four times 

five, twenty") and DL repeated it immediately. The four facts were presented in a fixed order. 

After this memorization, DL recalled the four facts in free recall. The experimenter immediately 

corrected her when she gave an incorrect answer or when she did not know the answer, and 

reminded her of exercises that she forgot to mention. At the end of the session, a post-test was 

administered in the same way as the pretest.  

Testing sessions: The first session in each week (except the first week) was dedicated to 

testing DL's knowledge of all the facts she learned since the beginning of the training program. 

Namely, 4 facts were tested in the beginning of the 2nd week, and all 16 facts were tested in the 

beginning of the 5th week. No teaching was done during these test sessions. Rather, each fact 

was presented 3 times in pseudo-random order: the same fact never appeared twice in a row, 

and the question a*b was never followed by the questions a*(b±1) or (a±1)*b. No feedback was 

provided for specific exercises, but DL was told her total number of errors at the end of the 

testing session. 
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10.4.2. Results 

10.4.2.1. Effectiveness of training: performance over all facts 

Table 10.3 shows DL's average performance in each testing time, separating between rule-

based facts (N x 0 and N x 1) and non-rule facts. Outlier reaction times of the non-rule facts 

were defined as explained in Section 10.4.1.1: slower than 2485 ms in the pre-training test, 3165 

ms in the post-training test, and 4040 ms in the follow-up test. To avoid over-representation of 

some facts over others (due to excluding errors and RT outliers of some facts more than of 

others), in each testing time we calculated the average RT per fact, and the RT analyses were 

based on these averages. 

DL solved the rule-based exercises flawlessly in all three testing times. This was better than 

her performance in the non-rule facts (χ2 > 5.41, one-tailed p ≤ .01). In the pre-training test, the 

rule-based facts were also solved more quickly than the non-rule facts (t(113) = 4.14, one-tailed 

p < .0001). 

Table 10.3. DL's overall performance before and after training. The error rate in the trained 

facts significantly dropped following the training, and this improvement persisted two months 

later, in the follow-up test. 

  Before training After training Follow-up  

Rule-based facts 

 % Errors   2 11 4 

 RT (ms)   753 (312) 1114 (512) ***   665 (263)  

Non-rule facts 

All % Errors 45 26*** 19*** 

 RT (ms) 1033 (306) 1097 (413) 1616 (1044)***  

All - matcheda RT (ms) 1047 (303) 1029 (338) 1285 (538)  
      

Trained % Errors 81 42*** 35*** 

 RT (ms) 1114 (432) 1276 (463) 2194 (1087)*  

Untrained % Errors 17 13 7*  

 RT (ms) 1009 (268)   971 (330) 1241 (529)  

Comparison with pre-training test (unpaired t-test, one-tailed p for errors, two-tailed p for 

reaction times):   * p < .05    *** p < .002 
a Facts that were answered correctly at least once in each of the testing times. The per-fact 

mean RTs were compared with paired t-test. 

The error rates in the non-rule facts significantly dropped from the pre-training test to the 

post-training test, demonstrating that the training was effective. As predicted, this overall 
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improvement was driven by a significant improvement in the trained facts, with no significant 

improvement in the untrained facts16. Reaction times increased in the follow-up testing, but this 

was mostly an artifact: before training, many facts were excluded from the RT statistics because 

DL did not answer, or gave an incorrect answer. After training, more facts were answered 

correctly, but sometimes slowly. When analyzing only the facts that were answered correctly at 

least once in all three testing times, the RT increase in the follow-up test was not significant for 

the trained facts (paired t(4) = .82, two-tailed p = .46) and marginally significant for the 

trained+untrained facts (paired t(24) = 19.97, two-tailed p = .06). 

10.4.2.2. Effect of within-set interference on the post-training knowledge 

Table 10.4 presents DL’s detailed performance per exercise in each of the 3 testing times. 

Our main prediction was that the training would be more effective for sets with lower within-

set similarity. To test this prediction, we examined the point biserial correlation between the 

within-set similarity level (1, 2, or 3) and the success/failure in each answer attempt in the post-

test. To eliminate a possible effect of prior knowledge, only the 10 exercises with pre-training 

score = 0 were analyzed (but including all items yielded essentially the same results). The 

correlation between similarity level and success was significant (rpb = .30, one-tailed p = .05), 

confirming the predicted effect of similarity. This effect persisted in the follow-up test after two 

months (rpb = .35, one-tailed p = .03). 

A possible concern is that the effect of interference is actually a problem size effect in 

disguise. Knowledge of multiplication facts is typically better when the operands are smaller 

(Zbrodoff & Logan, 2005; Zimmerman et al., 2016). The correlation between the average 

operand size and the within-set similarity level, although mild and non-significant (r = .10,  

p = 0.60), may perhaps explain the above findings. However, contrary to this explanation, the 

post-training performance did not correlate with the average operand size (point biserial 

correlation = -.02), indicating that the results were not an artifact of a problem size effect. As 

for the follow-up results, they did correlate with problem size (point biserial correlation:  

r = -.34, one-tailed p = .001). Thus, to assess a possible problem size artifact, the follow-up test 

scores of the 10 exercises with pre-training score = 0 (one score per exercise) were submitted to 

logistic regression with two predictors: the average operand size and the within-set similarity 
                                                 

16 Conceivably, the reduced error rate in trained facts could be explained as regression to the mean, because the 
pretest data presented here was also used to select the trained facts. However, we doubt that regression to the mean 
could convincingly account for a difference of 39% in error rates. Furthermore, the regression to the mean account 
predicts a corresponding increase in error rates in the untrained facts, but no such increase was observed. 
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level (1, 2, or 3). Both predictors had significant contribution (b[similarity] = -1.24, p = .03; 

b[operand size] = -.34, p = .05), refuting the problem-size artifact interpretation, and confirming 

that lower within-set similarity resulted in better performance. 

Table 10.4. DL's performance score per trained fact (scale: 0-3) and per testing time (scale:  

0-12). After training, she performed better in the low-similarity set than in the high-similarity 

set. This difference persisted when she was tested 2 months later. 

 

Within-set  

similarity 

Score 

Answers during training 

(each cell is an answer attempt) 

 Before 

training 

After 

training Follow-up Day 1 Day 2 Day 3 

W
e

e
k

 1
 

Low 

(S = 0) 

4 * 4 = 16 0 3 3 � � � � � � � � � � � � � � 

8 * 3 = 24 0 2 2 x x � � � � � � � � � � � � 

8 * 7 = 56 0 1 0 � � � � � � � � � � � � � � 

5 * 3 = 15 2 3 3 � � � � � � � � � � � � � � 

Total 2 9 8               

W
e

e
k

 2
 

High 

(S = 18) 

7 * 4 = 28 0 2 1 � � � � x � x x � � x � � � 

7 * 6 = 42 0 1 0 x x � x � � � x � � � � � � 

8 * 4 = 32 0 0 0 � � � � � � � � � � x � x x 

9 * 4 = 36 0 1 1 x x x x � x x � x � � � � � 

Total 0 4 2               

W
e

e
k

 3
 

Medium 

(S = 6) 

8 * 8 = 64 0 3 2 � � � � � � � � � � � � � � 

9 * 7 = 63 0 2 2 x � x � � � � � � � � � � � 

6 * 2 = 12 1 1 3 � � � � � � � � � � � � � � 

8 * 6 = 48 2 3 3 � � � � � � x � � � � � � � 

Total 3 9 10               

W
e

e
k

 4
 

Medium  

(S = 8) 

9 * 6 = 54 0 2 2 � � � � � � � � � � � � � � 

6 * 5 = 30 1 0 3 � � � � � � � � � � � � � � 

8 * 5 = 40 1 3 3 � � � � � � � � � � � � � � 

7 * 5 = 35 2 1 3 � � � � � � � � � � � � � � 

Total 4 6 11               

Red/Green = below/above 50% performance. 

A second analysis was restricted to the low-similarity and high-similarity sets (and excluded 

the medium-similarity sets). Per testing time and per set, we counted the number of correct 

answers of the 12 answer attempts. The post-training accuracy in the high-similarity set (25%) 

was lower than in the low-similarity set (67%, χ2 = 4.2, one-tailed p = .02), even when excluding 

the single exercise with high pre-training score (χ2 = 2.29, p < .07). Again, this pattern persisted 

after two months: the follow-up test accuracy in the high-similarity set (33%) was lower than in 
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the low-similarity set (83%, χ2 = 6.17, one-tailed p = .006), even when excluding the single 

exercise with high pre-training score (χ2 = 3.5, one-tailed p = .03). 

10.4.2.3. DL's progress during the training sessions 

The effect of within-set similarity was observed not only in the post-training test results but 

also in DL’s performance during training. Table 10.4 shows each of DL’s answer attempts 

during training. For low- and medium-similarity sets, she reached a ceiling level by the end of 

the first or second training day, whereas the high-similarity set continued posing difficulty even 

by the end of the third training day. To quantify this difference, we defined the “last error day” 

per fact – the last training day in which DL made at least one error in that fact (0 if no errors). 

The 4 facts with earliest last-error-days were exactly the 4 facts in the low-similarity set (an 

event with a random probability 1 to ]8
4a – i.e., p < .02), confirming that DL learned the facts 

in the low-similarity set more quickly than in the high-similarity set. 

The effect of similarity did not go unnoticed by DL herself: during the 2nd week of training, 

when she learned the high-similarity set, she commented more than once that "it is hard for me 

to learn these exercises because of all these 4's that repeat over and over again" – an accurate 

description of her sensitivity to interference. 

10.5. Discussion of Chapter 10 

10.5.1. Hyper-sensitivity to interference as a source for difficulty in 

memorizing calculation facts 

We reported the case of DL, a 40-year-old woman with severe difficulties in memorizing 

the multiplication table. A series of tasks showed several spared memory functions: DL’s short-

term memory spans were in the normal range, she performed well in nonword reading and 

repetition, and she showed good ability to remember an arbitrary list of words and the details of 

a story. These results indicate good short-term and long-term memory abilities, i.e., DL's 

difficulties in memorizing multiplication facts did not originate in impaired verbal memory. In 

contrast, DL performed poorly in a task that taps hypersensitivity to interference: when asked 

to memorize lists of verbal non-numeric items, she performed poorly only in the list where items 

were similar to each other. Thus, her difficulty in multiplication is best explained as resulting 

from hypersensitivity to interference. 
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To confirm this conclusion, as well as to help DL overcome her difficulty, we devised a 

training method that controlled the degree of interference. The method was clearly successful: 

DL managed to memorize multiplication facts as long as in a given week, she only had to learn 

facts that were relatively dissimilar from each other. In this condition, her learning was virtually 

immediate: in the set with lowest similarity, she reached perfect performance after merely two 

(!) exposures to each fact, and in the sets with medium similarity, she reached ceiling 

performance in the second day of training, i.e., after spending a total of less than 2 minutes per 

trained fact. This good memorization of multiplication facts was exhibited during the training 

sessions, when tested at the end of the training period, and even after a retention period of two 

months, during which DL received no additional training. Conversely, she had much difficulty 

in the set with high similarity between facts: she made many errors during training, her post-

training score was hardly any better than the pre-training score, and this small improvement 

virtually disappeared two months later. 

These results extend the findings of De Visscher and Noël (2013) in two ways. First, the 

hypersensitivity to interference of the woman they reported, DB, was manifested mostly in slow 

retrieval of multiplication facts, whereas DL showed not only slow RTs but actually erred in 

almost half of the multiplication facts. Second, whereas De Visscher and Noël’s evidence for 

interference as the source of multiplication difficulty was correlational, here we showed 

evidence for a causal relation: manipulating the amount of similarity-induced interference 

affected the memorization of multiplication facts. 

10.5.2. The cognitive mechanisms underlying sensitivity to interference 

Our findings clearly show that DL’s difficulty in multiplication was the result of 

hypersensitivity to interference. Still, to understand the effects of interference fully, we would 

have to identify the exact mechanism that was sensitive to interference. We consider here two 

aspects of this question. 

10.5.2.1. Which memory process is sensitive to interference? 

High levels of interference – induced in this study by high similarity between multiplication 

facts – may take an effect in different processing stages (Bartko, Cowell, Winters, Bussey, & 

Saksida, 2010; Farrell, 2006; Fernandes & Moscovitch, 2000; Kaufmann et al., 2004; Lochy, 

Domahs, & Delazer, 2004; van Dyke & McElree, 2006; Wixted, 2004). Interference may disrupt 

either the encoding and storage of data in memory (Farrell & Lewandowsky, 2002; 
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Lewandowsky & Farrell, 2008) or the retrieval stage (Burgess & Hitch, 1999; Henson, 1996, 

1998). Clearly, the manipulation that we used (changing the within-set similarity) specifically 

targeted the storage stage, whereas the retrieval stage was done identically for all sets of facts. 

One interpretation of these findings is therefore that interference disrupts the storage/encoding 

processes rather than on the retrieval processes (Parkin, Ward, Bindschaedler, Squires, & 

Powell, 1999), in line with the view of De Visscher and Noël (2013, 2014a, 2014b). However, 

the findings can also be explained under the assumption that interference affects retrieval 

processes. For example, high interference may cause over-activation of incorrect facts during 

retrieval, yet a storage-time manipulation, which perhaps improves the association between a 

pair of operands and their product, could help an impaired retrieval mechanism. More research 

would be required to tease apart between storage and retrieval as the mechanisms sensitive to 

interference. Note, however, that from a clinical/intervention point of view, the picture is clear: 

a storage-time intervention can help overcoming similarity-induced interference. 

10.5.2.2. Which kind of information is sensitive to interference? 

The processes impacted by interference can be characterized not only as storage versus 

retrieval processes, but also by the kind of information they represent. The process sensitive to 

interference could be phonological (Baddeley, 1966, 1968; Farrell, 2006; Nelson et al., 1974; 

Runquist, 1970), semantic (Baddeley, 1966; Oppenheim et al., 2010), a number-specific 

process, or another processes. 

In line with the possibility of phonological sensitivity-to-interference, the speed and 

accuracy of addition fact retrieval was shown to be affected by phonological similarity (Noël, 

Désert, Aubrun, & Seron, 2001). Further support to the phonological view comes from studies 

of non-number words, which show that word memorization is affected by their phonological 

similarity to each other (Nelson et al., 1974; Pajak, Creel, & Levy, 2016; Runquist, 1970). 

However, interpreting these findings as an explanation to difficulties in memorizing 

multiplication facts should be done with caution, because at least some phonological 

mechanisms treat words and numbers differently (Bencini et al., 2011; L. Cohen et al., 1997; 

Dotan & Friedmann, 2015). Furthermore, the representation of multiplication facts in memory 

is apparently not purely phonological (Whalen, McCloskey, Lindemann, & Bouton, 2002). 

An interesting comparison is between sensitivity to interference of numbers in multiplication 

facts, as investigated in the present study, and another type of interference phenomenon, 

observed in sentence processing. In comprehension and production of sentences, some syntactic 
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structures are harder than others. One such example are object relative sentences (this is the dog 

that the cat bites), which are harder to produce and understand than sentences with subject 

relative (e.g., this is the dog that bites the cat). Object relatives are difficult for individuals with 

acquired and developmental syntactic deficits as well as for children whose syntactic abilities 

were not yet fully developed. In these cases, upon hearing the sentence this is the cat that the 

dog bites, they may fail to understand whether the cat is biting the dog or vice versa. Why are 

object relatives more difficult than subject relatives? The reason for the difference lies in the 

different syntactic structures of the two sentences. In both sentences, the key is to understand 

that "the dog bites the cat", but this exact phrase appears in neither sentence: in each of the two 

sentences, one constituent (either the dog or the cat) is missing from the embedded clause 

because it already appears in the main clause. This phenomenon is known as syntactic 

movement – a constituent “moved” from the embedded clause to a new location in the main 

clause. In both (1) and (2) the phrase "the dog" has moved from its original position within the 

embedded clause (marked with an underline) to an earlier position, in the main clause. The 

crucial difference between the two sentences is that whereas "the dog" moves in both, it does 

not cross another noun phrase in its movement in (1), but it does cross the noun phrase "the cat" 

in sentence (2): 

(1) This is the dog that ____ bites the cat 

(2) This is the dog that the cat bites ____ 

Friedmann, Belletti, and Rizzi (2009) (see also Belletti, Friedmann, Brunato, & Rizzi, 2012) 

suggested that the moved constituent is harder to relate to its original position in (2) than in (1) 

because in (2), the original position and the new position are separated by an intervener: an 

interfering element (the dog). They further suggested that sentences like (2) are more difficult 

only when the moved element and the interfering element are syntactically similar to each other. 

In (2), both elements are noun phrases. In support of this notion, Friedmann et al. showed that 

children's comprehension was not impaired when the moved and interfering constituents 

belonged to different syntactic categories. For example, in (3) one constituent is a lexically-

restricted noun phrase and the other (who) is not, and such sentences were relatively easier. In 

(4), both constituents were nouns, and indeed such sentences were harder: 
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 Moved Interfering 
Sentence constituent constituent 

(3) Who did the cat bite  _____?  who the cat (noun)  

(4) Which dog did the cat bite ____? the dog (lex. rest. noun) the cat (lex. rest. noun) 

 

Friedmann et al.'s (2009) experiment was about syntactic processing, and DL’s case was 

about hypersensitivity to interference in calculation. Yet the two cases bear some resemblance: 

in both situations, a person needs to process the relation between two target items in the presence 

of an interfering item. Memorizing multiplication facts occurs in the presence of other 

interfering facts, and representing syntactic movement – the local syntactic relation between a 

moved constituent and its original position – occurs in the presence of an interfering constituent. 

In both situations, the key to succeeding is the existence of sufficient dissimilarity between the 

target items and the interfering item. This analogy suggests that sensitivity to interference is not 

a property of systems that process single items, but a property of structural (syntactic) systems 

that process the relations between items. 

10.5.3. Clinical implications 

The clinical goal of this study was to examine whether a person can learn the multiplication 

table even when they have hypersensitivity to interference. This was clearly the case – when we 

maintained a low level of interference, DL easily learned the multiplication facts. This is not 

trivial: conceivably, one could hypothesize that learning a sequence of facts like 7*4, 8*4, 9*4 

would actually be easier – for example, it may allow more transparently to use an addition-based 

strategy as scaffold for multiplication. The fact that such a set was actually harder to memorize, 

in spite of the opportunity to use scaffold strategies, emphasizes even further the importance of 

the within-set similarity as a factor that determines the difficulty of memorization, at least for 

individuals with hypersensitivity to interference. 

Our findings directly imply on preferred practices for teaching the multiplication table. At 

least for individuals with hypersensitivity to interference, it seems better to teach simultaneously 

dissimilar rather than similar facts. This is almost the opposite of how multiplication is typically 

taught at school: very often, children learn the multiplication table in an ordered manner – first 

the products of 2, then of 3, etc. Although this ordered teaching method might have its 
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advantages, it implies that the children learn similar facts simultaneously, which increases the 

degree of interference and may therefore create difficulty. 

Our findings are in excellent agreement with another study that examined how manipulating 

the interference level affected the memorization of multiplication facts (Mark-Zigdon & 

Katzoff, 2015). Mark-Zigdon and Katzoff taught a group of typically-developing 3rd grade 

children a set of 10 new multiplication facts. They showed that the children's memorization of 

these facts was disrupted if interference was induced by teaching a new set of multiplication 

facts immediately after the first set. Thus, like us, Mark-Zigdon and Katzoff showed that high-

interference conditions disrupted memorization of multiplication facts. The difference between 

the two studies is that each of them highlights a slightly different aspect of interference: our 

study highlights the importance of low interference within a set of learned facts; Mark-Zigdon 

and Katzoff’s study highlights the importance of avoiding interference from out-of-set facts. 

Together, the two studies support what we described in the introduction as the two foundations 

of an interference-reducing training method: grouping dissimilar facts when teaching, and 

temporally separating one set of facts from another. 

Our training method was effective for DL, an adult woman with hypersensitivity to 

interference, but its clinical implication may be most relevant for children who learn the 

multiplication table at school, many of whom may have normal sensitivity to interference. Will 

the same method be effective for all children, including children without hypersensitivity to 

interference? The findings of Mark-Zigdon and Katzoff (2015), who did not select participants 

based on sensitivity to interference, suggest that the answer to this question is affirmative. Future 

research may further examine the effect of interference-based manipulations on individuals 

without hypersensitivity to interference. 
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General Discussion 

This dissertation investigated the cognitive mechanisms of multi-digit number processing. 

It focused on the syntactic processes that handle the number structure – encode the relations 

among the digits, or integrate several digits into a single cognitive structure. Each of the three 

sections of this dissertation examined a different cognitive process: the conversion of a digit 

string to quantity – namely, number comprehension; the conversion of a digit string to spoken 

number words – namely, oral reading of numbers; and the association of pairs of digits with 

memorized multiplication results. The main conclusions regarding these three processes are 

hereby described. 

Converting a multi-digit string to quantity 
The first section of this dissertation examined how two-digit and multi-digit numbers are 

converted to quantity. We used the number-to-position paradigm: participants saw a number 

and marked the corresponding position on a number line. Our touchscreen-based version of this 

paradigm continuously measures the finger position and direction, and this way provides high-

temporal-granularity information about the intended responses in intermediate stages of a trial. 

The two main findings in the series of tasks ran with this paradigm were these: first, the 

participants’ mapping was linear in the trajectory endpoints but had an additional logarithmic 

effect in intermediate trajectory parts. This log effect could be reduced to an effect of differential 

first-deviation-time of the trajectories of small versus large numbers. Second, when educated 

unimpaired adults performed the task with two-digit numbers, the effects of the decade and unit 

digits on finger movement built up in parallel. A lag induced in the appearance of the decade 

digit delayed its effect by the same amount, but a lag in the unit digit delayed the unit effect by 

35 ms less than the lag duration, indicating the existence of an idle time window in the units 

processing pathway. 

To account for these and the other findings, we proposed a detailed model of the multidigit-

to-quantity transcoding process. The model describes several processing stages: the visual 

identification of the digit symbols and of the number length; the creation of a quantity syntactic 

frame – a sequence of decimal placeholders; the quantification of each digit according to its 

decimal role; and merging the per-digit quantities into a single multidigit quantity. Moreover, 

on top of the conversion to quantity, the number-to-position task involves two additional stages: 
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decision on a target location; and manual movement – dragging the finger towards that target 

location. 

Looking deeper into the dynamics of the processing stage that decides on target location, we 

showed that this decision process is in good agreement with the Bayesian notion of a prior that 

gradually turns into a posterior. Within a trial, three stages could be observed in the finger 

direction: first, pointing according to a default behavior or the task instructions; second, by a 

Bayesian prior, determined by the perceived distribution of target numbers in the experiment; 

and finally, by the trial-specific target number (Bayesian posterior). The transition to the third 

(target-based) stage is faster for large small numbers than for larger numbers, because the 

quantity representation allows faster accumulation of evidence for smaller numbers than for 

large numbers. 

Some of the processing stages in this model specifically concern the number structure or the 

relations between digits. Such is the case for the identification of a number length and for the 

creation of a syntactic frame. Other processing stages, such as digit quantification, are 

apparently executed per digit, in accord with studies that showed decomposed processing of 

decades and units (Meyerhoff et al., 2012; Moeller, Fischer, et al., 2009; Nuerk & Willmes, 

2005). However, even these per-digit processes were remarkably synchronized: when the 

decade and unit digits were presented simultaneously, their effects on finger movement were 

nearly simultaneous and in 1:10 ratio, even in three-digit numbers. This suggests some kind of 

dependency –synchronization or coordination – between the quantification processes of the 

different digits. 

This model integrates several existing concepts with new concepts. The creation of a 

“quantity syntactic frame” is a new notion, introduced in this research for the first time. Other 

sub-processes were discussed in previous studies: visual identification of the digits (Cohen & 

Dehaene, 1991; Friedmann, Dotan, & Rahamim, 2010; Starrfelt et al., 2010), visual 

identification of the number length (Cohen & Dehaene, 1991), per-digit quantification 

(Meyerhoff et al., 2012; Moeller, Fischer, et al., 2009; Nuerk & Willmes, 2005), multidigit 

quantity (Brysbaert, 1995; Dehaene et al., 1990), and the decision on a target location, including 

the Bayesian modeling of this decision process (Cicchini et al., 2014). The present research 

provided further evidence for these processes, and integrated them into a single model. 
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The paradigm we developed – number-to-position mapping with trajectory tracking – may 

be useful to examine several questions in number processing. The analysis methods that we 

created may be also for other, non-numeric trajectory tracking experiments. Indeed, this 

paradigm, and our tools, is already being used by several researchers – to examine number 

processing in very young children (Feldman & Berger, unpublished data), calculation (Pinheiro-

Chagas et al., 2017), non-linguistic syntactic processing (Al-Roumi, Dotan, & Dehaene, 2017), 

and decision making (Dotan et al., 2017). Furthermore, the paradigm may prove as a useful 

clinical diagnostic tool: its high temporal sensitivity can capture anomalies even on single 

subject analysis (e.g., ZN’s unexpected serial decade-unit pattern, Fig. 9.2b). 

Converting a multi-digit string to number words 
The second section of this dissertation examined in detail the mechanisms involved in 

multidigit-to-verbal conversion, namely, number reading. Chapter 7 reported a detailed 

neuropsychological examination of seven individuals with different deficits in number reading. 

Based on their impairment patterns and the dissociations they showed, we proposed a detailed 

model of number reading. This model distinguishes between the visual analysis of the digit 

string and the verbal production of the corresponding number words. Visual analysis involves 

several sub-processes: encoding the digit identities, encoding their order, and additional sub-

processes that encode several aspects of the number’s decimal structure: its length, its triplet 

structure, and the positions of 0. In verbal production, the model stipulates that a series of 

processes creates the number’s verbal structure. This verbal structure starts with a tree-like 

representation, created based on the number’s decimal structure. This syntactic tree is a verbal 

representation, yet it does not depend on a particular language. The tree is then converted into a 

linear representation of the number’s verbal structure by applying language-specific rules, some 

of which depend on the number’s decimal structure (e.g., “the digit 0 does not translate to any 

number word”) and some on additional digits (e.g., “1 in the decades position yields an x-teen 

word”). The result of applying these rules is the number word frame, a list of number word 

specifiers (e.g., the frame for 750 is [_:ones] [hundred] [and] [_:tens]). This frame is bound 

with the ordered digits, provided by the visual analyzer’s identity and order encoders, and the 

bound frame ([7:ones] [hundred] [and] [5:tens]) is used to retrieve the phonological form of 

each word from a dedicated phonological store. 
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Similarly to the case of multidigit-to-quantity conversion, here too there are several sub-

processes that specifically handle the multi-digit number’s structure: the decimal structure 

encoder in the visual analyzer, and the verbal processes that generate the number word frame. 

Indeed, an impairment in any of these sub-processes results in errors that were traditionally 

classified as “syntactic”, e.g., decimal shift errors such as 750→7,500 (Cipolotti et al., 1994; 

Deloche et al., 1992; Deloche & Willmes, 2000; Lochy, Domahs, Bartha, et al., 2004; Noël & 

Seron, 1993). 

The investigation of number reading, on top of its theoretical contribution to the 

understanding of the processes involved in number reading, also made an important clinical 

contribution. Our ability to diagnose specific deficits in number processing depends on good 

understanding of the processes involved in number reading, as well as on the availability of 

sensitive assessment tasks and accurate methods for fine-grained analysis of error types (e.g., 

distinguishing between decimal shifts of a leftmost digits and shifts of other digits). An 

important result of this study was that we developed a set of cognitive tests to diagnose specific 

types of acquired and developmental number reading disorders. This battery of tests (Dotan & 

Friedmann, 2014; Appendix E) is already being used in the field, and is being taught in Tel Aviv 

University’s program for assessment of learning disabilities. 

Having identified several specific sub-processes of number reading, we examined the degree 

of specialization of these processes: we showed that number reading is dissociable from word 

reading (Chapter 8) and from number comprehension (Chapter 9). 

To compare word reading with number reading, Chapter 8 described in detail the processes 

involved in reading words and numbers, and proposed a possible homology between specific 

sub-processes of word reading and number reading. We reviewed existing literature in light of 

the detailed reading models and the proposed homology between them, and identified several 

word-number dissociations in specific sub-processes: in the visual analysis stage, position 

encoding is separate for letters and digits (Friedmann, Dotan, & Rahamim, 2010), and so is digit 

identity encoding (Abboud et al., 2015; Baker et al., 2007; Grotheer et al., 2016; Hannagan et 

al., 2015; Park et al., 2012; Shum et al., 2013). In verbal production, phonological retrieval is 

done in different ways for number words and other words (Cohen et al., 1997; Dotan & 

Friedmann, 2015; Marangolo et al., 2004, 2005). We described in detail two individuals who 

exhibited previously unreported word-number dissociations: a selective impairment in the visual 
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analysis of numbers, in the process that parses the digit string into triplets; and a selective 

impairment in the verbal process that generates the number word frame. This set of dissociations 

leads to the conclusion that word reading and number reading are implemented by completely, 

or almost completely, separate processes. 

Number reading is separate not only from word reading but also from number 

comprehension, namely, the conversion of multidigit strings to quantity. Multidigit-to-word 

conversion and multidigit-to-quantity conversion may share common components in the initial 

parts – the visual parsing of numbers. Their later processing stages, however, are at least 

partially separate. This separation was directly examined in Chapter 9 via the case of ZN, an 

individual with aphasia. ZN had a selective impairment in converting multidigit numbers to 

number words, despite his good visual processing of such numbers, his spared ability to produce 

them phonologically (e.g., in repetition), and his spared ability to convert single-digit numbers 

to words. This highly specific pattern can be explained as a selective impairment in a verbal 

process that handles the number’s structure – presumably, the generation of number word 

frames. Crucially, several tasks showed that ZN could correctly convert multi-digit numbers to 

quantity. This dissociation indicates that the impaired process handles multidigit-to-verbal 

conversion but not multidigit-to-quantity conversion, and hence, that multidigit-to-verbal 

conversion is separate from multidigit-to-quantity conversion. 

Multiplication impairments and their remediation 
The last section of this dissertation addressed a different kind of digit integration: the 

association of two digits with their product, when memorizing the multiplication table. Here we 

reported DL, a 40-year-old woman with a severe lack of knowledge of the multiplication facts. 

In line with a recent series of studies on multiplication facts knowledge (De Visscher & Noël, 

2013, 2014a, 2014b), we showed that DL’s enduring failure to learn the multiplication table is 

accompanied by hypersensitivity to interference – an extreme difficulty in memorizing highly-

similar verbal items, such as multiplication facts. To show that hypersensitivity to interference 

is indeed the reason of her multiplication difficulty, we showed that DL could easily learn the 

multiplication facts, but only when they were presented to her in low-interference conditions – 

i.e., when the learning session included only multiplication facts that were sufficiently dissimilar 

from each other. Thus, this study provided the first causal evidence to hypersensitivity to 

interference as a source of difficulty in learning the multiplication table. 
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Importantly, this study too made contribution that is not only theoretical but also clinical. 

The training program we devised for DL could be used at schools to teach multiplication. Our 

study suggested that this method would be useful for children who have trouble learning the 

multiplication table due to hypersensitivity to interference; but another study, which used a 

similar paradigm (Mark-Zigdon & Katzoff, 2015), strongly suggests that even typically-

developing children may benefit from this method.  

Conclusion 
This dissertation described several specific cognitive mechanisms that specifically handle 

multi-digit numbers. Many of these mechanisms are similar in the sense that they integrate digits 

into more complex structures, yet they are still separate from each other, each with its own role.  

Studies of symbolic number processing traditionally distinguished between lexical and 

syntactic processes – the former handling single digit or number words, and the latter handling 

integration of digits or number words. Under this classification, many of the processes we 

characterized here can be described as syntactic. This dissertation therefore offers a possible 

concrete definition of the term “syntax” in the context of number processing: “number syntax” 

is not a single process, but rather a collection of separate processes that integrate numeric 

elements. This view fits well with previous studies that showed much specificity in syntactic 

processing. In particular, many numerical or mathematical syntactic processes are dissociable 

from language syntax (Brysbaert et al., 1998; Maruyama et al., 2012; Monti et al., 2012; Varley 

et al., 2005). 

It was hypothesized that syntactic representations require certain cognitive abilities that are 

unique to humans, and that for this reasons human alone can form complex syntactic 

representations (Dehaene, Meyniel, Wacongne, Wang, & Pallier, 2015; Hauser et al., 2002). Yet 

even if this is true, and a common cognitive ability underlies all syntactic mechanisms, there are 

still several distinct syntactic processes. I hope that the research presented here would prove to 

have contributed to our understanding of such mechanisms, and in turn – to our ability to 

diagnose and treat individuals who have impairments in these mechanisms. 
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Appendix A. Supplementary material for Chapter 3 

A.1. The small-number advantage is not a motor effect 

The small-number advantage effect – the faster deviation of the finger towards small 

numbers than towards large numbers – was taken in Chapter 3 as a numeric effect. An alternative 

interpretation, however, could attribute this effect to a motor rather than a numeric process. We 

hereby describe two control experiments (mentioned briefly in Section 3.2.3) that refute this 

motor interpretation. 

A.1.1. Experiment A1: Number-to-position task with left-handed 

participants 

A motor interpretation of the small-number advantage may attribute the effect to the asymmetry 

resulting from the fact that all participants in the Experiments described in Chapter 3 were right 

handed. For example, the types of muscle activity required to push the finger left or right, may 

make leftward movements faster than rightward movements. Such a view predicts a reversed 

effect (large-number advantage) if the experiment is performed by left-handed participants. 

A.1.1.1. Method 

Seventeen left-handed adults, aged 26;7 ± 3;9, participated in this experiment. Their mother 

tongue was Hebrew and they had no reported cognitive disorders. They performed the silent 

number-to-position task with a 0-40 number line and 4 trials per target.  

The horizontal movement onset time was calculated per trial using the method described in 

Section 3.2.2.4.1. This succeeded for 79% of the trials by the automatic onset-detection 

algorithm, and for 98% after manual encoding. The factors affecting onset times were analyzed 

with a 2-way repeated measures ANOVA. The dependent measure was the horizontal movement 

onset time, the subject was a random factor, and there were 2 within-subject factors: the target 

side (< 20, left; or > 20, right), and a numeric factor given by the absolute distance between the 

target number and 20. 

A.1.1.2. Results 

The failed trial rate was 6.9% ± 6.8%. The endpoint error was 1.71 ± 0.49 numerical units, the 

endpoint bias was -0.68 ± 0.47 numerical units, and movement time was 1197 ± 166 ms. There 

was no significant difference between the left-handed and right-handed group in any of these 

measures (t(33) < 1.75, two-tailed p > 0.09) except the failed trial rate – the left-handed group 
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had more errors (t(33) = 2.3, two-tailed p = .03). Fig. A.1a shows the mean trajectories per target 

number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. A.1. Results of Experiment A1. (a) Median trajectories per target. (b) The mean horizontal 

movement onset time, averaged over all participants, as a function of target number. The red line 

shows the same data with Gaussian smoothing, σ = 2. (c) Regression b values, with the trajectories 

aligned by the target onset. (d) Regression b values, with the trajectories aligned by the horizontal 

movement onset time. 

Contrary to the interpretation of the small-number advantage as a motor effect, the left-

handed participants showed a small-number advantage just like the right-handed participants in 

the previous experiments: the horizontal movement onset times (Fig. A.1b) were smaller for 

target numbers < 20 (mean = 415 ms) than for target numbers > 20 (mean = 478 ms). The  

Side x Distance repeated measures ANOVA showed that this small-number advantage was 

significant (a main effect of Side, F(1,16) = 12.87, p = .002, ηp
2 = .45, η2 = .16). The ANOVA 

also showed, similarly to Experiment 1 in Chapter 3, that movement onset times were affected 

by the target distance from the middle of the number line (main effect of Distance,  

F(1,16) = 27.97, p < .001, ηp
2 = .64, η2 = .10), and there was no Side x Distance interaction 

(F(1,16) = 1.57, p = .23). 

We compared the small-number advantage between the left-handed group (Experiment A1) 

and the right-handed group (silent condition in Experiment 3.1). The data of both experiments 

was submitted to a mixed-design ANOVA – we repeated the Side x Distance ANOVA, while 
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adding the Experiment as a between-subject factor. The small-number advantage was not 

significantly different between the two experiments (Side x Condition interaction: F < 1). 

To further confirm that the left-handed group behaved similarly to the right-handed group, 

the trajectory data was submitted to the regression analyses presented in Section 3.2.1.3. The 

dependent variable was the implied endpoint and the predictors were the target number N0-40, 

log’(N0-40), the unit digit, the spatial-reference-points-based bias function SRP, and the target 

number of the previous trial. One regression was run per participant and time point in 50 ms 

intervals. The per-subject regression b values of each time point and predictor were compared 

versus zero using t-test. The results (Fig. A.1c) were very similar to the pattern observed in the 

silent condition in Experiment 3.1: dominant linear factor, transient logarithmic factor, SRP 

contribution in the late trajectory parts, and an effect of the previous trial in early trajectory 

parts. In a second regression, in which the trials were aligned by their horizontal movement 

onset time, the log effect was no longer significant (Fig. A.1d), like in Chapter 3. 

A.1.2. Experiment A2: Point towards an arrow 

If the small-number advantage has a motor origin, it should also appear in a non-numeric 

mapping-to-position task. Experiment A2 did exactly that: it was almost identical with the 

number-to-position task, but the stimuli were presented non-numerically, as an arrow pointing 

to the target location (this is the same experiment as described in Section 2.3.5). 

A.1.2.1. Method 

Nineteen right-handed adults, aged 32;3 ± 12;9, participated in this experiment. Their 

mother tongue was Hebrew and they had no reported cognitive disorders.  

The method was similar to the number-to-position task, with a single difference: the target 

stimulus was not a number, but a downward-pointing arrow placed at the target location along 

the top line. The participants were instructed to move their finger towards the arrow. Each target 

arrow could appear in one of 41 positions (corresponding with the positions of the numbers  

0-40), and each position was presented four times.  

The horizontal movement onset time was calculated per trial using the method described in 

Section 3.2.2.4.1. This succeeded for 81% of the trials by the automatic onset-detection 

algorithm, and for 95% after manual encoding. The factors affecting onset times were analyzed 

with a 2-way repeated measures ANOVA: the dependent measure was the horizontal movement 

onset time, the subject was a random factor, and there were 2 within-subject factors: the target 
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side (left or right), and a numeric factor given by the absolute distance between the target 

number and the middle location. 

A.1.2.2. Results 

The failed trial rate was 1.85% ± 1.92%. The endpoint error was 0.40 ± 0.11 numerical units, 

the endpoint bias was 0.11 ± 0.15 numerical units, and movement time was 730 ± 154 ms.  

Fig. A.2a shows the mean trajectories per target location. 

Contrary to the interpretation of the small-number advantage as a motor effect, the 

participants did not show a left-side advantage. In fact, they showed the opposite pattern – a 

right-side advantage: the horizontal movement onset times (Fig. A.2b) were larger for left-side 

target locations (mean = 227 ms) than for right-side locations (mean = 215 ms). The  

Side x Distance repeated measures ANOVA showed that this large-number advantage was 

significant (a main effect of Side, F(1,16) = 4.77, p = .04, ηp
2 = .21, η2 = .06). Movement onset 

times were also affected by the distance of the target location from the middle (main effect of 

Distance, F(1,16) = 35.74, p < .001, ηp
2 = .67, η2 = .10), and there was no Side x Distance 

interaction (F < 1). 

 

 

 

 

 

 

 

 

 
Fig. A.2. Results of Experiment A2 – pointing to arrow. (a) Median trajectories per target. (b) The mean 

horizontal movement onset time, averaged over all participants, as a function of target number. The 

red line shows the same data with Gaussian smoothing, σ = 2. 

A.1.3. Conclusion from Experiments A1 and A2 

Both experiments clearly refute the motor hypothesis as an interpretation of the small-

number advantage: the effect, which was observed for right-handed participants, was observed 

in the number-to-position task also for left-handed participants, whose motor movements are 
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reversed. In contrast, the effect did not exist when right-handed participants pointed to arrows, 

a task that involved the same motor responses as the number-to-position task. 

Taken together, the experiment clearly refute the notion of a motor-driven advantage of the 

left side (or of the non-dominant side). In fact, Experiment A2 even suggests the opposite: when 

the number-processing part was eliminated, we observed earlier movement towards locations 

on the right side than to locations on the left side. 

A.2. The horizontal movement onset time detection algorithm: 

methodological notes 

A.2.1. Separating intentional movements from jitter 

The onset detection algorithm used the velocities during the time window 0-250 ms as a 

baseline for random movements. It is hard to know whether a movement is intentional or not, 

however, we can show that the horizontal velocities in this early time window are categorically 

different from the velocities in later time windows. 

 

 

 

 

 

 

 

 
Fig. A.3. Velocities in different time windows in Experiment 3.1 silent condition. Until 375 ms the 

velocities are low and remain quite unchanged. Then the velocities start increasing quickly, and after 

500 ms the velocity distribution remains relatively stable. 

Fig. A.3 shows the distribution of horizontal velocities in different 125-ms time windows 

(the data is from the silent condition in Experiment 3.1). It clearly shows that the velocity 

distribution hardly changed in the first three time windows, up to 375 ms post stimulus onset. 

Only in the next time window (375 – 500 ms) velocities start building up. By 500 ms, the 

velocities are already quite close to their peak value.Unsurprisingly, this figure is in almost 

perfect match with the regression analysis (Fig. 3.2a). The finger doesn’t start deviating 

sideways before 350-400 ms, and this can be seen not only when inspecting the finger direction 
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(implied endpoint) over all trials in a regression analysis, but even when inspecting the detailed, 

per-trial velocity information, as done here. 

This figure strongly suggests that intentional movements are almost non-existent, or at least 

extremely small, in the first 375 ms of each trial. Thus our assumption, that the first 250 ms of 

each trial are random movements or jitter, is even conservative. 

A.2.2. Another measure for horizontal movement onset 

To validate our conclusions about horizontal movement onsets, we examined an additional 

measure of horizontal movement onset time. This measure, acceleration initiation time, is the 

time when we first observe strong leftward or rightward acceleration. An acceleration peak was 

defined as a time window of at least 150 ms during which the acceleration was constantly above 

a certain threshold (0.175 numerical units / sec2), and the acceleration initiation time was defined 

as the beginning of the first acceleration peak. To obtain accelerations, the horizontal velocities 

(calculated as described in the Chapter 3) were smoothed with Gaussian (σ = 20 ms) and derived. 

 

 

 

 

 

 

 

 
Fig. A.4. Horizontal movement onset times in Experiment 3.1 as measured by the acceleration initiation 

time – the beginning of the earliest horizontal acceleration peak. This measure too shows a small-

number advantage, i.e., earlier horizontal movement onset for smaller numbers than for large 

numbers. The red line shows the same data with Gaussian smoothing, σ = 2. 

 

The pattern of acceleration initiation times was very similar to the pattern of the horizontal 

movement onset times obtained with our onset-detection algorithm – both in visual inspection 

(Fig. A.4) and when applying the Condition x Side x Distance repeated measures ANOVA as 

described in the Chapter 3. Specifically, acceleration initiation times were later in color naming 

than in the silent condition (main effect of Condition, F(1,17) = 73.47, p < .001, ηp
2 = .81,  

η2 = .35). There was a small-number advantage (main effect of Side, F(1,17) = 7.78, p = .12,  
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ηp
2 = .31, η2 = .01). Unlike the onset-detection algorithm described in the Chapter 3, here we 

did not observe a difference in small-number advantage between the two conditions (no 

Condition x Side interaction, F < 1). Finally, acceleration initiation times were later for target 

numbers near the middle of the number line (main effect of Distance, F(1,17) = 60.8, p < .001, 

ηp
2 = .78, η2 = .04), and this effect was marginally stronger in color naming than in the silent 

condition (Condition x Distance interaction, F(1,17) = 3.50, p = .08, ηp
2 = .17, η2 < .01).  

Thus, the analysis of acceleration initiation times replicated the main findings obtained with 

the onset detection algorithm in the Chapter 3. Acceleration initiation times may have the 

advantage of being a more intuitive measure, and that the way to calculate them is simpler. 

However, we believe that the onset-detection algorithm is a truer measure of the participants’ 

intention to move. For example, on some trials the acceleration initiation time may reflect an 

initial bias, prior to processing the target number. 
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B.1. Did the participants comply with the instructions for default 

direction? 

Visual inspection of the average trajectories indicates that the participants followed the initial 

direction (which was implicit in E xperiment 5.1 and specifically instructed in 

Experiment 5.2). For a more specific analysis of the finger’s initial directions, we calculated the 

initial direction per trial as the mean implied endpoint until t = 50 ms (Fig. B.1). In 

Experiment 5.1, the initial directions were -4.2º (SD = 4.3º, SD refers to the standard deviation 

of the per-subject means), -1.3º (SD = 3.9º), and 0.3º (SD = 4.5º) for the small-biased, unbiased, 

and large-biased conditions, respectively. Namely, the directions were similar across the 

conditions (repeated measures ANOVA with the Condition as a numeric within-subject factor: 

F(1,16) = 1.01, p = .33). In Experiment 5.2, the initial directions were -42º (SD = 10º), -1.3º  

(SD = 6º), and 43º (SD = 8º) for the left, middle, and right conditions, respectively – i.e., similar 

values in opposite directions in the left and right conditions (paired t(23) = .24, 2-tailed p = .81).  

These results clearly show that the participants followed the instructions regarding the initial 

finger aiming. 

 

 

   

 

 

 

Fig. B.1. The finger’s initial direction (average implied endpoint in the first 50 ms of a trial), averaged 

per target and condition. The thick lines show the same data after smoothing (Gaussian, σ = 3). 

B.2. The duration of prior-based pointing 

In Chapter 7, we reported the significance of each regression predictor by comparing the b 

values to 0. Examining the magnitude of these b values may provide additional information, 

because we used a meaningful scale for all predictors: in all cases, b=1.0 indicates “proper” 

weighting of the predictor.  

Experiment 5.2 

Right 

Left 

Middle 

Experiment 5.1 a b 
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Here we specifically examine Experiment 5.2 results. We observed that for most predictors, 

the b values suggest “proper” weighting of the relevant effect: b[Condition], which reflects the 

finger’s initial direction, was almost 1.0 when the finger started moving, suggesting that subjects 

moved towards 0, 50, or 100, as instructed. Similarly, b[target number] was almost exactly 1.0 

at 650 ms post stimulus onset and thereafter, suggesting that the target number was encoded on 

a linear scale and that the target location was adjusted to the length of the number line. The 

situation was different, however, with respect to b[constant], which reflects pointing by the 

Bayesian prior: its value was not 1.0, as it should have been were the participants consistently 

pointing towards 50. The b[constant] value was much lower, and reached a peak of about 0.25.  

This under-effect of the constant may have two interpretations. One possibility is that the 

prior-based aiming to 50 was partial – either the prior had only a partial effect on each trial, or 

it affected only some trials (whereas in other trials the prior-based pointing was skipped and the 

participant switched directly from the default direction to the target location). The peak of 

b[constant] – about 25% of its expected value – suggests that the prior effect is reduced to about 

25%, or alternatively that it affects about 25% of the trials. 

A second interpretation is that the prior affected all trials, but its effect was relatively short 

and not synchronized between trials. As a result, in each time point only some trials were 

affected by the prior. Our regressions consider one time point at a time, and in this time point 

they average over all trials, only some of which are affected by the prior, and this makes the b 

value lower. Namely, what appears in the regression as a weak and long effect is actually the 

sum of many stronger and shorter effects. We can even estimate the durations of the “real” (per-

trial) effect: the b[constant]’s peak value is 0.25, i.e., about ¼ of the “real” effect size, so the σ 

of b[constant]’s regression curve should correspondingly about 4 times the σ of the “real” 

curves. In the regression (Fig. 2c), the b[constant] effect is about 350 ms long, so the duration 

of the real point-according-to-prior stage is about ¼ than that – about 90 ms. 

B.3. Validating the comparability of conditions 

Our main analysis method in Section A was a regression analysis that pooled together 

identical post-stimulus-onset time points from different trials. Pooling together trials in this way 

has some underlying assumptions, and we hereby examined two main assumptions. 
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B.3.1. Differential progress of the cognitive process? 

When comparing the same time point in different trials, we assume that at this time point 

the cognitive process reaches a similar stage in different trials – i.e. that on average, the cognitive 

process develops in the same speed in different trials. This assumption is not trivial: in fact, in 

Chapter 3 we found that sometimes the cognitive process develops in different speeds in 

different trials – the number-to-position task is performed faster for smaller numbers than for 

larger numbers (“small number advantage”). Such differences can bias the regressions: e.g., in 

the case of small-number advantage, the result of the temporal bias was that even a linearly-

organized mapping to positions may appear in the regressions as logarithmic. 

Table B.1. Trial-level measures per condition (grand mean ± standard deviation of the per-subject 

means). There were no significant differences between the conditions in either experiment. 

 Left Middle Right ANOVA 

Experiment 5.1 

Movement time (ms) 1091 ± 146 1089 ± 137 1098 ± 151 F(2,34) = 0.10, p = .90 

Endpoint bias (0-100) -1.15 ± 1.13 -1.02 ± 1.07 -0.99 ± 1.13 F(2,34) = 0.25, p = .78 

Endpoint error (0-100) 3.77 ± 0.80 3.90 ± 0.85 3.82 ± 0.83 F(2,34) = 0.58, p = .56 

% Failed trials 11.94 ± 2.09 12.94 ± 3.23 12.02 ± 1.97 F(2,34) = 1.04, p = .36 

Experiment 5.2 

Movement time (ms) 917 ± 142 899 ± 130 914 ± 115 F(2,46) = 0.65, p = .53 

Endpoint bias (0-100) -0.83 ± 1.35 -0.91 ± 1.21 -0.70 ± 1.51 F(2,46) = 0.45, p = .64 

Endpoint error (0-100) 4.29 ± 1.18 4.32 ± 1.18 4.26 ± 1.21 F(2,46) = 0.12, p = .89 

% Failed trials 6.07 ± 6.05 5.36 ± 5.51 3.72 ± 2.84 F(2,46) = 1.87, p = .17 

The “ANOVA” column shows the results of repeated measures ANOVA with the condition as a 

single within-subject factor. 

In the present study, such problems could arise in case of differences between the conditions, 

e.g., if one condition has faster movement than another condition, or one condition is more 

difficult than another. To refute these possibilities, we compared the conditions with each other 

using trial-level measures that reflect, at least to some extent, processing speed and difficulty: 

the endpoint bias is a trial’s endpoint (the position where the finger crossed the number line) 

and the target number. Endpoint error is the absolute value of endpoint bias. Movement time is 

the duration from stimulus onset to the moment when the finger reached the number line. 

Finally, the rate of failed trials also reflects experimental block’s difficulty to some extent 

(Chapter 3). We did not compare here within-trial measures, because for most of these measures 

we in fact predicted some systematic condition effects, as described in the Chapter 7.  
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Table B.1 shows that for each of the two experiments, no significant differences between 

the conditions was fond in each of the above measures (repeated measures ANOVA with the 

condition as a between-subject factor). 

B.3.2. Differential finger speed? 

Another kind of artifact may arise from the geometrical aspects of the task. The starting 

point was always in the bottom-middle of the screen, and the finger moves towards the number 

line. Importantly, the finger’s distance from the number line may affect the participant’s 

movement strategy: for example, changes of direction may be sharper when the finger is closer 

to the number line, not for any cognitive reason but simply because there isn’t enough room to 

take a relaxed curve. The finger’s y coordinate may therefore affect the implied endpoint for 

non-cognitive reasons. 

 
 

 

 

 

 

 

 
Fig. B.2. In both experiments, the Y coordinates per time point are similar between conditions. This 

refutes possible artifacts of geometrical movement strategies resulting from the finger vertical position. 

Our analyses compared the conditions using regressions with implied endpoints as the 

dependent variable. If the implied endpoints were biased – for example, because we regressed 

together trials from y=30% in condition A and trials from y=70% in condition B, this may bias 

the regressions. For the regressions to be valid, we should assume that for each time point, the 

different conditions should have similar y coordinates. In Experiment 5.1, this was indeed the 

case: the y coordinates did not significantly differ between the conditions in any time point  

(Fig. B.2a; repeated measures ANOVA with the condition as a between-subject factor and the 

subject as the random factor: F(2,17) < 0.80, p ≥ .46 in all time points). In Experiment 5.2, 

however, some differences were observed in early time points (until 470 ms, F(2,23) ≥ 3.2,  

p ≤ .05; but in later time points, F(2,23) ≤ 3.0, p ≥ .06). Specifically, the finger moved faster in 

the “right” condition (Fig. B.2b). To refute the possibility that this difference can serve as an 
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alternative interpretation to Experiment 5.2 results, we re-ran the Experiment 5.2 regressions as 

described in the Chapter 7, with the only difference that now we ran one regression per y 

coordinate (rather than per time point) – a method that eliminates the potential artifact. Contrary 

to the prediction of the alternative interpretation, the results were essentially the same as before. 

Specifically, there was a significant transient effect of Const (from y=20% to y=65%, peak 

b[const] = 0.18 at y=40%), as well as a concurrent effect of N-1. 

B.4. Additional factors affecting finger movement 

In previous studies with the trajectory-tracked number-to-position paradigm, we included in 

the regressions a logarithmic predictor to account for potential logarithmic quantity 

representation. In Chapter 3 we showed that this log predictor captures a temporal bias rather 

than a logarithmic representation. It was therefore not used here. Nevertheless, in both 

experiments, adding the log predictor essentially did not change the effects of the other 

predictors, and the log effect itself was very small and not significantly higher than 0 in any 

time point.  

Our previous studies also included a bias-function predictor (SRP, defined in 

Section 2.3.2.6). The SRP predictor was not included in the regressions in the present chapter 

for the sake of simplicity, as this predictor was not relevant to the theoretical question we 

examined. In both experiments, adding this predictor did not change the results: the other 

predictors were essentially unchanged, and the SRP predictor itself behaved similarly to our 

previous experiments – its effect was considerable (b ~= 0.25 in the endpoints) and started rising 

together with the target number regression effect (in Experiment 5.2) or slightly after it (in 

Experiment 5.1). 
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How similarity between multiplication facts should be measured 

When memorizing a set of multiplication facts, the different facts in the set interfere with 

each other, and the degree of interference depends on the degree of similarity between the set 

items. How should we measure this similarity? The basic idea we used here was that for a given 

set, a similarity was computed as the sum of pairwise similarities of all pairs in the set. Thus, 

given a set of 4 facts, we computed the similarity index between each of the 6 possible pairs of 

facts, and summed these values to get the set’s similarity level. 

In turn, pairwise similarity can be defined in several ways. Perhaps the most intuitive index 

of similarity could be the number of digits shared between the two facts. However, following 

De Visscher and Noël (2014b), we used a different index – the number of shared digit pairs. 

These two indices are tightly correlated, but the former index increases linearly with the number 

of shared features (digits) between the facts, whereas De Visscher and Noël’s similarity index 

increases in an over-linear manner, in accord with findings from similarity analyses in other 

domains (Tversky & Gati, 1982). 

A comparative evaluation of possible similarity indices would require more than one 

participant and more than one training intervention, so such evaluation was not possible in the 

present study. Nevertheless, we compared several possible similarity indices and examined how 

each of them would account for our data. Our main finding was that DL’s performance in the 

high-similarity set (set#2) was poorer than in the three other sets. A good similarity index should 

reflect this distinction, i.e., it should yield higher similarity for set#2 than for the other sets. 

We examined the following indices of pairwise similarity: 

1. The number of identical digits that appear anywhere in the two facts. For example, the facts 

3*4=12 and 3*5=15 have 2 common digits, so their similarity is 2. 

2. The measure that was used in the present study: similarity is the number of identical digit 

pairs between the two facts (irrespectively of the digit positions). For example, the facts 

8*7=56 and 8*3=24 have similarity=0 because they have no common pair of digits (they 

only share the digit 8). The facts 3*4=12 and 3*7=21 have similarity=3 due to three common 

digit pairs (1-2, 2-3, and 1-3). 
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The two indices above are based on digits. Because multiplication facts are assumed to be stored 

verbally (Dehaene, 1992; Dehaene & Cohen, 1995), we also evaluated two corresponding 

measures that are based on number words: 

3. The number of number words that appear in both facts. For example, the similarity of 

3*4=12 and 3*7=21 is 1, because only the word “three” appears in both facts (the digit “1” 

also appears in both, but it is expressed as two different words – “twelve”, “one”). 

4. The number of number word pairs that appear in both facts. 

Finally, we also evaluated the following two indices: 

5. The number of number words that appear in both facts in the same role (operand, result). 

For example, 3*4=12 and 3*7=21 have similarity=1: the word “three” appears in both facts 

as an operand. However, 3*4=12 and 7*9=63 have similarity=0, because the word “three” 

is an operand in the first fact and a part of the result in the second fact. 

6. A final similarity index considers the operands and ignores the result. The idea is that 

interference takes an effect before the result was retrieved, and at this time only the operands 

have an effect. This index was defined as similarity=1 if the two facts have a common 

operand, and similarity=0 otherwise. 

The above six indices were evaluated in two ways: by their compatibility with the training 

effect (where lower similarity should predict higher effect of the training), and by their 

compatibility with DL’s pre-training knowledge. 

First, we examined which similarity indices best predicts DL’s training results. Specifically, 

we examined which of the similarity indices assigns high value to set#2, in which DL had the 

poorest performance, and low values to the three other sets. Table C.1 shows the similarity value 

of each training set according to each of the six similarity indices. Clearly, De Visscher and 

Noël’s (2014b) index (no. 2) was the best: it showed the largest gap between the within-set 

similarity in week #2, in which DL showed poor performance, and the within-set similarities of 

the other weeks, in which the training succeeded. Notably, it is somewhat surprising that 

although multiplication facts are stored verbally, the most appropriate similarity index is one 

that is based on digits rather than on number words. 
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Table C.1.  Within-set similarity per training week, computed using different similarity indices. 

Training week no. 1 2 3 4  

DL’s performance Good Bad Good Good  

Facts trained during this week 4*4=16 

8*3=24 

8*7=56 

5*3=15 

7*4=28 

7*6=42 

8*4=32 

9*4=36 

8*8=64 

9*7=63 

6*2=12 

8*6=48 

9*6=54 

6*5=30 

8*5=40 

7*5=35 

Pre-traininga 

r (1-tail p) 

Index 1: # of identical digits 12 26 16 20 .25 (.005) 

Index 2 (used in the study):  

No. of identical digit pairs 
0 18 6 8 .19 (.02) 

Index 3: # of identical number words 7 16 8 14 .25 (.004) 

Index 4: # of identical word pairs 1 4 2 7 -.09 

Index 5: # of identical words-in-role 6 12 7 12 -.17 

Index 6: Common operand exists 4 8 3 8  

a Point biserial correlation between DL’s pretest successes and failures in a multiplication fact and 

that fact’s similarity with the rest of the table. Positive r values indicate the predicted direction. 

Another method to evaluate the similarity indices was based on DL’s pre-training knowledge. 

We reasoned that if between-fact similarity affected DL’s knowledge of multiplication facts, 

she might show lower pre-training knowledge of multiplication facts that have higher similarity 

with the rest of the multiplication table. We therefore computed, for each multiplication fact, its 

similarity with the rest of the multiplication table. This was defined as the average of the fact’s 

similarities with all other multiplication facts. To evaluate a similarity index, we computed the 

point biserial correlation between the fact-table similarity value, computed as described above, 

and DL’s successes and failures on that fact in the pre-training test. This correlation was 

computed for each similarity index from #1 to #5 (and not for index#6, because its fact-table 

similarity value was identical for all facts). The correlations for the five similarity indices are 

shown in the rightmost column in Table C.1. They show that indices #1-#3 were better than #4-

#5 in predicting DL’s pre-training behavior.  
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Appendix D. Finger-tracking versus mouse-tracking 

Trajectory tracking paradigms are less than a decade old, yet they are already being used in 

several labs. Some labs track the finger movement in a 3-D space (Finkbeiner et al., 2014, 2008; 

Friedman et al., 2013; Song & Nakayama, 2008a). Others used mouse tracking (Faulkenberry 

et al., 2016; Lepora & Pezzulo, 2015; Marghetis et al., 2014; Santens et al., 2011) with software 

such as Jon Freeman’s MouseTracker  (Freeman & Ambady, 2010). Our lab, and our 

collaborators, use finger tracking with a tablet computer. 

 

 Subject 1, iPad Subject 1, desktop and mouse 

   

 

 

 

 

 Subject 2, iPad  Subject 2, desktop and mouse 

 

 

 

 

 

 
Fig. D.1. Pilot experiment results – raw trajectories. Two participants were asked to drag their finger 

from an origin position to a target position on an iPad tablet computer (a,c), or on a desktop computer 

using a mouse (b,d). 

 

We hold that a tablet computer is superior to mouse tracking, because tablets have a more 

natural motor interface, which allows for better accuracy. To examine this issue, we ran a pilot 

experiment in which two subjects were asked to drag either their finger (on an iPad) or a mouse 

cursor (on a desktop computer) several times from an origin position in the bottom of the screen 

to a target position on the top of the screen. The origin and target positions were marked as dots. 

a b 

c d 
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The pilot was run using a simple image drawing software, so the subjects saw the trajectories 

being drawn. Subject 1 was 40 years old and subject 2 was 27 years old.  

Fig. D.1 shows the raw trajectories in this pilot experiment. Although the results were not 

analyzed quantitatively, and the iPad and desktop conditions were admittedly not well-

controlled methodologically, the difference between the conditions seems quite clear: the 

trajectories on the tablet were better aimed than the mouse trajectories, and the variance in 

trajectories was lower on tablet. 
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Appendix E. A battery for assessment of impairments in 

number processing 

As part of the neuropsychological research done during this PhD, Naama Friedmann and I 

created a battery of neuropsychological tests to assess impairments in number processing 

(MAYIM, Dotan & Friedmann, 2014). We are using this battery for research purposes. The 

battery was also included in the curriculum of Tel Aviv University’s program for assessment of 

learning disabilities, and is provided to the students as a clinical tool. 

The MAYIM battery includes several sub tests, organized in few topics: 

Transcoding: 

This section covers all transcoding pathways between the various representations of symbolic 

numbers: digit strings, oral, and verbal written. In particular, the battery includes tests of number 

reading, number dictation, number repetition, copying, etc. There are screening tasks, each with 

18 numbers, and longer lists of numbers for a more in-depth assessment. The lists of numbers 

were designed while considering the number length, the presence of 0 and 1, and the existence 

of double digits in the number (e.g. 252). 

The battery includes a pen-and-paper version of all tasks, and a computerized version of 

some tasks to allow presentation of stimuli with limited exposure duration. The battery further 

includes the tools needed for error analysis – specific and clear guidelines, and Excel templates. 

Tasks to assess the visual analyzer: 

To assess the visual analyzer, the battery includes several tasks with digit input and without 

verbal production: same-different decision, sequence identification, and number matching 

(these tasks are explained in detail in Chapter 7). 

Other tasks: 

The MAYIM battery is at present focused mainly on symbolic number processing, however, it 

also includes tasks for basic assessment of other number processing mechanisms: 

• Calculation facts (addition up to 20, multiplication up to 10*10) 

• Calculation procedures 

• Knowledge of calculation principles (e.g., commutativity) 

• Number-to-position mapping and position-to-number mapping 
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Appendix F. The Number Catcher game° 

During my PhD, Stanislas Dehaene and I created a computer game for teaching the basic 

concepts of number and arithmetic to children. This game – “The Number Catcher” – is freely 

available online (http://www.thenumbercatcher.com) in three languages – English, French, and 

Hebrew, and as an app for iOS/Android tablets. 

The game was designed primarily for children in the early school grades, or in the last 

preschool year (age 5-10). It is intended for typically-developing children as well as for children 

with difficulties in mathematics. Unlike other games, The Number Catcher is primarily focused 

on training basic cognitive mechanisms of number processing and arithmetic – the three 

representations of number (digits, words, and quantity) and the basic principles of addition. The 

game focuses on two-digit numbers, in order to train not only single-digit representations but 

also multi-digit related processes. 

From a cognitive point of view, the game requires the player to collect sets of items (up to 

10 items per set) until the total number of items achieves a certain target number (between 2 and 

40). The target number and the number of items in each set are indicated in digit format (e.g., 

“4”), visually as a line of objects (e.g., ♠♠♠♠), verbally by narration (“four”), or as the result 

a simple addition or subtraction exercise (e.g., 7-3). This setting rehearses fast transcoding 

among the three number representations (verbal, digital, and quantity), as well as basic addition 

and subtraction facts and basic arithmetic procedures. 

F.1. Game description 

The sets of items are visually presented as boxes with objects (fruits, flowers, or fish). The 

player’s goal is to collect these boxes into a vehicle – truck, carriage, or ship. The target number 

of items to collect is presented verbally by the game narration (e.g., “please load this truck with 

15 fruits”), but also visually as the number of slots in the vehicle, and as a number in Arabic 

format. The size of each box is presented in Arabic format, as the result of a simple 

                                                 
° Game acknowledgements: Created by Dror Dotan, Stanislas Dehaene, Manuela Piazza, and Caroline Huron. 
Consulting on game design: Ghislaine Dehaene-Lambertz, Anna Wilson, Shahar Nash, Limor Tabeka, Daled 
Dotan. Project management and programming: Dror Dotan. User experience: Eila Shamir. Graphic design: 
Prototype Studio. Sound: Daled Dotan. Narration: Karine Hyman. Translation: Océane le Tarnec, Stanislas 
Dehaene, Sherry Nabil, and Rick Teplitz. Funding and financial support: INSERM, CEA, Collège de France, 
McDonnell Foundation, Fondation Bettencourt-Schueller, Azrieli Foundation, and The Lieselotte Adler Laboratory 
for Research in Child Development. We thank Leonid Geldin, Moria Lahis, Naama Friedmann, and Rachel Isyomin 
for their help. 



 

 

 

addition/subtraction exercise, visually – as a concrete number of objects or as the box size 

(magnitude), or as combinations of some of the above (Fig. F.1a-b). Boxes can also be sawed 

in order to achieve a specific required size (Fig. F.1c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. F.1. The Number Catcher screen layout. 

 

The reaction times in the game are adaptive to the player’s level, however, faster reaction 

times result in a higher score (and more collected stars, Fig. F.1d). Also, the adaptivity is not 

absolute – the game imposes some minimal reaction time, which becomes faster in higher levels. 

The game also includes various functional and graphical elements whose goal is not 

cognitive but to improve playability and fun. 

Cutting a box to achieve a specific size Faster performance → more stars 

Set size presented as objects / Arabic numbers Set size presented as arithmetic exercise a b 

c d 



 

 

 

F.2. Cognitive goals 

1. Training the transcoding processes 

Numbers can be represented by different cognitive mechanisms – as digits, as number 

words, and as approximate magnitudes; different operations rely on different representations 

(Dehaene, 1992; Dehaene & Cohen, 1995; Dehaene et al., 2003). The ability to handle the 

different representations of numbers, and to transform one to another, is a cornerstone of 

numeric literacy. Being able to transform numbers into the quantity representation is especially 

important, because we usually see or hear numbers as digits or words, but it is the quantity 

representation that makes us understand the “meaning” of a number and have a sense of how 

large it is (Dehaene, 1997). Practicing these transformations may help us process numbers faster 

and faster, with fewer errors, and with less effort (Räsänen, Salminen, Wilson, Aunio, & 

Dehaene, 2009; Wilson, Dehaene, Dubois, & Fayol, 2009; Wilson, Revkin, Cohen, Cohen, & 

Dehaene, 2006). 

Whereas many mathematical games focus just on calculation skills, The Number Catcher is 

one of only a few games that were specifically designed to teach and practice the more 

fundamental level – the various representations of numbers and the transformations between 

them, with a special focus on the quantity representation. This is achieved by presenting number 

in various formats throughout the game, and encouraging the player to respond with increasing 

speed. 

2. Step-by-step teaching of addition and subtraction 

Addition exercises can be solved using various strategies: counting, complement to 10, and 

memory retrieval. The Number Catcher takes its player, step by step, from basic calculation up 

to adult strategies: 

In the first levels, the game teaches the counting strategy. The objects from the selected 

boxes are loaded on the vehicle one by one, and as each object is loaded, the game says aloud 

the total number of objects on the vehicle. This is aimed to strengthen the counting routine and 

to give it a meaning – the recitation of count words increments the quantity by one at a time. 

Subsequent game levels practice the complement to 10 strategy. The game requires filling 

the vehicles by multiples of 10. For example, if a carriage has 8 flowers on it and you want to 

get to 13 flowers, first you have to put 2 flowers to fill an exact decade, and only then can you 



 

 

 

put the remaining 3 flowers on the carriage. This makes the player practice the complement to 

10 strategy. 

The adult strategy, memory retrieval, is trained in several ways. Addition exercises are 

presented to the player with their results, both visually and verbally (by the narrator), to 

encourage rote learning. On top of that, as you progress in the game, the boxes become with 

fixed size, so the box physical size no longer serves as a magnitude cue to quantity. In the most 

advanced levels, each box is labeled with addition and subtraction exercises (Fig. F.1b), so the 

player has to solve several addition and subtraction exercises very quickly, which is possible 

only by memorization and fast retrieval. 

3. Emphasize fluency 

The Number Catcher puts a lot of emphasis on automation. We want the player to perform 

the numeric and arithmetic operations in an automatic manner – not with slow and attention-

requiring strategies. The game promotes this in several ways: 

• Adaptive level of difficulty: The player can move on to the next level only after reaching a 

certain level of accuracy. 

• Adaptive speed: when you play faster, boxes fall into the screen faster, which makes the 

game more challenging. The higher speed allows the player to achieve higher scores, but 

also leaves him/her less and less time to calculate, and therefore encourages fluency. 

The adaptive speed also serves another purpose: a fast-pace game maximizes the number of 

exercises encountered per minute and minimizes “cognitive idle time”, thereby increasing 

the learning effect. 

• Multiple solutions: The game is designed to have more than one correct solution at most 

times, and yet some solutions are better than others. To achieve high scores, the player must 

learn to choose the best solution, and this requires quick evaluation and comparison of 

several solutions. 

• Dual-task technique: in advanced game levels, more and more factors need to be considered: 

the spatial organization of the boxes in the container must be considered to prevent them 

from piling up; the color should be considered if the player wishes to get the color bonus; 

and there are special game elements such as clocks and bombs. These elements require some 

of the player's attention, and encourage the advanced player to practice number processing 

and calculation with less and less attention, i.e., increasingly automatically. 
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  ספרתיים: מנגנונים קוגניטיביים וליקויים בהם-עיבוד מספרים רב

  תקציר
  

כמעט כולנו קוראים, קוראים,  –מערכת המספרים היא אחת המערכות הסימבוליות הנפוצות ביותר בתרבות שלנו 

מספר, ואוסף -ספרות, עשרות מעטות של מילות 10ומבינים מספרים. בתור מערכת פורמלית, היא פשוטה למדי: 

רצף של מילות מספר ובחזרה, ומה כל אלה מספיקים כדי להגדיר איך לתרגם רצף ספרות ל –מצומצם של חוקים 

הכמות שמיוצגת ע"י רצפים אלה. לעומת זאת, המערכת הקוגניטיבית של עיבוד מספרים אינה כה פשוטה. היא כוללת 

ותהליכים ייעודיים לתרגום מייצוג לייצוג. רמת  –ספרוֹת, מילות מספר, וכמות  –ייצוגים שונים של מספרים 

למשל, משך הזמן הארוך שנדרש לילדים כדי להגיע  –ידי ביטוי בתופעות שונות המורכבות של המערכת הזו באה ל

  למידה רבות ושונות שפוגעות בעיבוד מספרים.-לשליטה במערכת המספרים, וקיומן של לקויות

אחד האתגרים בעיבוד מספרים הוא תרגומם מייצוג לייצוג. התרגום עשוי להיות קל יחסית במקרה של מספרים 

). מספרים ���-", "שלוש" ו3אז ניתן אולי לבצע את התרגום ע"י מיפוי ישיר בין הייצוגים (בין " – ספרתיים-חד

ספרתיים, לעומת זאת, מהווים אתגר משמעותי יותר: כדי לתרגם אותם מייצוג אחד למשנהו יש לקחת בחשבון -רב

ספרתיים הופכים את -שה, מספרים רבלא רק את הספרוֹת ומילות המספר, אלא גם את היחסים והתלויות ביניהן. למע

  כלומר, מערכת תחבירית. –מערכת המספר ממערכת סימבולית פשוטה למערכת שמייצגת את מבנה המספר 

ספרתיים בין ייצוגים: כיצד ממירים רצף -בעבודת הדוקטורט הזו חקרתי שני תהליכים של המרת מספרים רב

תרגמים רצף ספרות לרצף מילות מספר על מנת לקרוא את המספר ספרוֹת לכמוּת על מנת להבין את המספר, וכיצד מ

  בקול. לגבי כל אחד מתהליכי ההמרה האלה, התמקדתי במנגנונים התחביריים שמעבדים את מבנה המספר.

על מנת לחקור את תהליך ההמרה הזה, פיתחנו שיטת מחקר חדשה: המשתתפים ראו  רצף ספרוֹת לכמות.המרת 

ספרתיים והצביעו למקום המתאים על פני ציר מספרים, תוך כדי שאנו עוקבים באופן רצוף אחרי תנועת -מספרים רב

האצבע בין האצבע שלהם. המיקום שהמשתתף מסמן על ציר המספרים משקף את האופן בו הוא מייצג כמות; מסלול 

נקודת המוצא לבין ציר המספרים משקף את התהליך של בניית הייצוג הכמותי הזה. הפרידגמה הזו שימשה אותנו כדי 

  לחקור מספר שאלות לגבי המרת ספרות לכמות.

שאלה אחת שחקרנו היא האם ייצוג הכמות נסמך על סקלה ליניארית או לוגריתמית. מחקרים קודמים הראו 

 174ניסויים שערכנו עם  8השכלה מְמַפִּים מספרים אל ציר מספרים באופן ליניארי. בסדרה של שמבוגרים בעלי 

משתתפים, גם הם הראו מיפוי ליניארי שכזה על ציר המספרים; אך במקביל לכך, הם הראו דפוס לוגריתמי כאשר 

י עיבוד שונים של כמויות הביניים של התנועה. הדפוס הלוגריתמי הזה נבע מזמנ-בדקנו את מיקום האצבע בשלבי

גדולות בהשוואה לקטנות: המשתתפים עיבדו מספרים קטנים מהר יותר ממספרים גדולים, וכתוצאה מכך האצבע 



 

 

 

עיבוד מהיר יותר של  –סטתה לכיוון מספר קטן בשלב מוקדם יותר מהשלב בו סטתה לכיוון מספר גדול. האפקט הזה 

  ליניארי של כמויות.-אנובע ככל הנראה מייצוג ל –מספרים קטנים 

ספרתי במקביל או באופן סדרתי. כדי -שאלה מרכזית נוספת היתה האם אנו מעבדים את הספרות של מספר רב

ספרתיים, -ניסויים של מטלת מיפוי מספר למקום. המספרים שהופיעו היו דו 2-לבחון את השאלה הזו, השתמשנו ב

זמן מסוים ביניהן. כאשר ספרת היחידות הופיעה -מסך עם הפרשודאגנו שספרת העשרות וספרת היחידות יופיעו על ה

אחרי ספרת העשרות, השפעתה על תנועת האצבע התעכבה גם כן, אך משך העיכוב היה פחות מהצפוי: העיכוב 

מילישניות מהעיכוב הויזואלי (בין ספרת העשרות לספרת היחידות).  35-המוטורי (על תנועת האצבע) היה קצר ב

מילישניות במהלכו לא מתבצעת שום  35על כך שמסלול העיבוד של ספרת היחידות מכיל פרק זמן של הדבר מצביע 

). אנו מציעים כי פרק הזמן הזה נובע מכך שהמערכת ממתינה לבנייה של תבנית idle time windowפעולה (

  ספרתי. -ייצוג של המבנה העשרוני של המספר הדו –תחבירית של המספר 

גנוני קבלת ההחלטות המעורבים בתהליך מיפוי המספר למקום. תאוריות בייסיאניות מנבאות בדקנו גם את מנ

) של אפשרויות התגובה, שמתבססת על צעדים priorהחלטות אופטימלית מתחילה בהתפלגות ראשונית (-שקבלת

משתנים:  3קרה על קודמים, ומעדכנת אותה בהתאם לצעד הנוכחי. בדקנו את הניבוי הזה באמצעות המטלה שלנו ע"י ב

הכיוון הראשוני של האצבע, התפלגות מספרי המטרה בצעדים הקודמים, ומספר המטרה בצעד הנוכחי. כפי שניבאה 

  המשתנים האלה, בסדר זה. 3התאוריה הבייסיאנית, תנועת האצבע הושפעה ע"י 

תהליכים המעורבים במטלת בסיום הפרק העוסק בתרגום ספרוֹת לכמות, אנו מציעים מודל קוגניטיבי מפורט של ה

) תהליך איסוף מידע 2) תרגום רצף הספרות לייצוג הכמות. (1שלבים: ( 3מיפוי מספר למקום. מודל זה כולל 

)accumulation of evidence בהסתמך על צעדים קודמים  ראשית –) בייסיאני, שמוביל להחלטה לגבי מיקום היעד

)priorשלבים המעורבים -) תנועת האצבע. בנוסף, המודל מפרט מספר תתי3י. () ואז לפי המספר שמופיע בצעד הנוכח

ספרתי; שיוך כל ספרה לתפקיד -בתרגום רצף הספרות לייצוג הכמות: בניית התבנית התחבירית של המספר הרב

עשרוני בתבנית זו (יחידות, עשרות, וכו'); תרגום הספרה לכמות, תוך כך שלוקחים בחשבון את התפקיד העשרוני 

בייצוג ליניארי  –לה; ואינטגרציה של כמויות אלה (של הספרות הבודדות) לכמות כוללת שמתארת את המספר כולו ש

  ובייצוג לוגריתמי.

על מנת לזהות את השלבים בתהליך ההמרה הזה, חקרנו את תפקודם  .לרצף מילות מספררצף ספרוֹת המרת 

משתתפים עם קשיים ספציפיים שונים בקריאת מספרים. לחלק מהמשתתפים היה ליקוי בעיבוד הויזואלי של  7של 

בקידוד סדר הספרות, בקידוד אורך המספר, או בחלוקה של המספר לשלשות. למשתתפים אחרים  –רצף הספרות 

הם הפיקו מספרים במבנה שגוי. בהתבסס על הליקויים שנמצאו  –במנגנוני הפלט המילולי של מילות מספר  היה ליקוי

בקרב המשתתפים שבדקנו, ובהתבסס על מחקרים קודמים, אנו מציעים מנגנון קוגניטיבי מפורט של התהליכים 

נפרדים מקודדים את זהות הספרות  המעורבים בקריאת מספרים. המודל מניח שבעיבוד הויזואלי של המספר, תהליכים

ואת סדרן היחסי, ותהליכים נוספים מקודדים את המבנה העשרוני של המספר: ארכו, החלוקה של הספרות לשלשות, 

. מנגנוני הפלט המילולי כוללים תהליך אחד שמייצר את המבנה המילולי של המספר, ראשית במבנה 0ומיקומי הספרה 



 

 

 

לכדי מידע חלקי על רצף מילות המספר; ותהליך נוסף ששולף את הצורה הפונולוגית של דמוי עץ ואח"כ משטֵחַ אותו 

  כל מילת מספר.

מחקרים נוספים. הראשון ביניהם בדק האם קריאת  2-רמת הספציפיות של תהליכי הקריאה האלה נבדקה ב

את מילים (תרגום רצף מספרים (תרגום רצף ספרות לרצף מילים) משתמשת באותם מנגנונים קוגניטיביים כמו קרי

התהליכים השונים המעורבים בקריאת מילים וקריאת מספרים, ולגבי -אותיות לרצף מילים). לשם כך, סקרנו את תתי

התהליכים שאלנו האם הוא משרת קריאת מילים, קריאת מספרים, או את שני סוגי הקריאה. סקירה -כל אחד מתתי

שדיווחנו עליהן במחקר הנוכחי, הביאו למסקנה שמסלולי הקריאה  של מחקרים קודמים, בשילוב שתי דיסוציאציות

של מילים ומספרים הם נפרדים כמעט לחלוטין. אנו מציעים כי סיבה אפשרית להפרדה הזו היא ההבדלים בין המבנה 

  תחבירי של מילים לבין זה של מספרים.-המורפו

לים) משתמשת באותם מנגנונים קוגניטיביים המחקר השני בדק האם קריאת מספרים (תרגום רצף ספרות לרצף מי

, אדם עם אפזיה שלא ZNכמו הבנת מילים (תרגום רצף ספרות לכמות). גם כאן התשובה היתה שלילית: חקרנו את 

ספרתיים אך היה מסוגל להבין את הכמות שהם מייצגים. הדיסוציאציה הזו מעידה -היה מסוגל לקרוא בקול מספרים דו

חביריים, שמעבדים את מבנה המספר במהלך הקריאה שלו, נפרדים מהתהליכים התחביריים על כך שהתהליכים הת

  המעבדים את מבנה המספר במהלך התרגום שלו לכמות.

-החלק האחרון של עבודת הדוקטורט הזו חקר מקור אפשרי לקושי בלמידת לוח הכפל: רגישות עובדות חישוב.

ע"פ עובדות מילוליות הדומות זו לזו. מחקרים קודמים הראו עדויות יתר להפרעה, מצב בו קיים קושי חריף לזכור ב

יתר להפרעה לבין ידע לקוי של לוח הכפל. במחקר הנוכחי, אנו מציגים עדויות סיבתיות לקשר -למתאם בין רגישות

הזה. ערכנו מחקר התערבות בו רמת ההפרעה היתה מבוקרת, והראינו שמצב של הפרעה גבוהה מוביל לקושי 

ותי יותר בשינון לוח הכפל בהשוואה למצב של הפרעה מעטה. אנו מציעים השוואה אפשרית בין רגישות משמע

להפרעה בשינון לוח הכפל ובמצבים אחרים, ומעלים את האפשרות שרגישות להפרעה היא תכונה של מערכות 

ו מצביעה על כך שבניגוד תחביריות, שמקודדות את הקשרים בין פריטים. בנוסף, ההצלחה של תכנית ההתערבות שלנ

לשיטת הלימוד המקובלת בבתי ספר, שינון אפקטיבי של לוח הכפל דורש לקבץ יחדיו תרגילי כפל שונים ככל האפשר 

  זה מזה. מסקנה זו מצביעה על צורך אפשרי לשקול מחדש את אופן הלימוד של לוח הכפל בכיתות היסוד.

ספרתיים: -מודלים קוגניטיביים מפורטים של עיבוד מספרים רב 2עבודת דוקטורט זו הביאה לפיתוח של  לסיכום,

ספרתי לכמות, ומודל שני מתאר את התהליכים של -מודל אחד מתאר את התהליכים המעורבים בתרגום מספר רב

ספרתי למילות מספר ולדיבור. במהלך המחקר פיתחנו פרדיגמה מחקרית חדשה (מיפוי מספר למקום -תרגום מספר רב

רי תנועת אצבע), וסוללת מבדקים לאבחון של לקויות למידה בעיבוד מספרים סימבוליים. בנוסף, פיתחנו עם מעקב אח

  שיטת התערבות לטיפול בקשיים בלמידת לוח הכפל.
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